Luke
 

Uncertainty quantification for forest attribute maps with conformal prediction and k-nearest neighbor method

dc.contributor.authorKuronen, Mikko
dc.contributor.authorRäty, Janne
dc.contributor.authorPackalen, Petteri
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8089-7895
dc.contributor.orcidhttps://orcid.org/0000-0002-6578-8965
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-05-23T10:27:18Z
dc.date.accessioned2025-05-28T12:55:59Z
dc.date.available2025-05-23T10:27:18Z
dc.date.issued2025
dc.description.abstractForest attribute maps relying on remotely sensed data are increasingly required for local decision-making related to the use of forest resources. Such maps always have uncertainty, which can be challenging to quantify. The objective of this work is to introduce the conformal prediction methodology to uncertainty quantification in forest attribute mapping, particularly for the k-NN method. We compare several conformal k-NN procedures for the mapping of total volume, broadleaved volume and Lorey’s height using Sentinel-2 satellite images and airborne laser scanning data. We show that all procedures produce valid prediction intervals in the sense that they contain the true value with the desired probability, for example 90%. We use multiple measures to quantify how well the prediction intervals adapt to the difficulty of prediction in different forest strata. We found that there are multiple methods for k-NN to produce prediction intervals competitive with those produced by conformal quantile regression. These methods include conformal prediction based on the standard deviation or quantiles of the k nearest neighbors with commonly used values of k. We present how to produce a forest attribute map with the proposed conformal prediction intervals. We also show a theoretical coverage guarantee for the jackknife conformal k-NN procedure. We recommend conformal prediction for unit-level uncertainty quantification of forest attribute maps.
dc.format.bitstreamtrue
dc.format.pagerange15 p.
dc.identifier.citationHow to cite: M. Kuronen, J. Räty, P. Packalen, M. Myllymäki, Uncertainty quantification for forest attribute maps with conformal prediction and k-nearest neighbor method, Remote Sensing of Environment, Volume 325, 2025, 114758, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2025.114758.
dc.identifier.olddbid498962
dc.identifier.oldhandle10024/556386
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/23114
dc.identifier.urlhttps://doi.org/10.1016/j.rse.2025.114758
dc.identifier.urnURN:NBN:fi-fe2025052353629
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu3860
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2025
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.discipline112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber114758
dc.relation.doi10.1016/j.rse.2025.114758
dc.relation.ispartofseriesRemote sensing of environment
dc.relation.issn0034-4257
dc.relation.issn1879-0704
dc.relation.volume325
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556386
dc.subjectairborne laser scanning
dc.subjectcoverage
dc.subjectjackknife
dc.subjectprediction interval
dc.subjectquantile regression
dc.subjectremote sensing
dc.subjectsatellite data
dc.teh41007-00246400
dc.titleUncertainty quantification for forest attribute maps with conformal prediction and k-nearest neighbor method
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
1-s2.0-S0034425725001622-main.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
Description:
1-s2.0-S0034425725001622-main.pdf

Kokoelmat