Luke
 

Measuring forest machine rut depth using inexpensive remote sensing methods : A case study in Finland

dc.contributor.authorKainulainen, Henna
dc.contributor.authorRaatevaara, Antti
dc.contributor.authorHolmström, Eero
dc.contributor.authorAnttila, Perttu
dc.contributor.authorLindeman, Harri
dc.contributor.authorAla-Ilomäki, Jari
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.orcidhttps://orcid.org/0000-0002-6131-392X
dc.contributor.orcidhttps://orcid.org/0000-0001-5769-1066
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-02-12T08:28:09Z
dc.date.accessioned2025-05-28T11:31:06Z
dc.date.available2024-02-12T08:28:09Z
dc.date.issued2024
dc.description.abstractForest operations may result in rut formation detrimental to the forest environment. Affordable methods for monitoring rutting are therefore needed. In this study, three inexpensive remote sensing methods were tested for measuring rutting: a drone-based camera using photogrammetry (UAVPH); RGB-depth simultaneous localization and mapping with a mobile stereo camera (RGB-D SLAM); and mobile LiDAR scanning with an iPad (iPad). The measurements were performed at two forest operation sites (A and B) in Finland. Sufficiently reliable results were obtained with UAVPH and RGB-D SLAM on site A, which consisted of open area. Here, UAVPH and RGB-D SLAM produced rut depth estimates with a root-mean-square error (RMSE) of 4 to 7 cm. On site B, trees surrounding the ruts were present. Here, the accuracy of UAVPH was lower than on site A, with an RMSE of 12 and 14 cm for the two ruts respectively. On this site, RGB-D SLAM gave an RMSE as high as 43 and 108 cm due to lower computational power being available during measurement. Pearson’s correlation between the remote sensing measurements and reference values was over 0.90 for UAVPH and RGB-D SLAM on site A. On site B, correlation for UAVPH was over 0.70, but correlation for RGB-D SLAM was low. The iPad did not produce results of useful accuracy. With a clear view of the ruts being imaged and with sufficient computational power on site, the UAVPH and RGB-D SLAM methods appear promising approaches for monitoring rut depth in real forest operations, UAVPH being the superior of the two.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange21 p.
dc.identifier.isbn978-952-380-874-4
dc.identifier.olddbid497237
dc.identifier.oldhandle10024/554671
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/22056
dc.identifier.urnURN:ISBN:978-952-380-874-4
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationon
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedei
dc.publisherLuonnonvarakeskus
dc.relation.ispartofseriesLuonnonvara- ja biotalouden tutkimus
dc.relation.issn2342-7647
dc.relation.numberinseries8/2024
dc.rightsAll rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554671
dc.subjectforest machines
dc.subjectphotogrammetry
dc.subjectsoil mechanics
dc.teh41007-00211300
dc.titleMeasuring forest machine rut depth using inexpensive remote sensing methods : A case study in Finland
dc.typepublication
dc.type.okmfi=D4 Julkaistu kehittämis- tai tutkimusraportti taikka -selvitys|sv=D4 Publicerad utvecklings- eller forskningsrapport samt utredningar|en=D4 Published development or research report or study|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
luke-luobio_8_2024.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:
luke-luobio_8_2024.pdf

Kokoelmat