Luke
 

Large-scale forest resource mapping with spatial gaps in the training data: Comparison of different modeling approaches

dc.contributor.authorBalazs, Andras
dc.contributor.authorMiettinen, Jukka
dc.contributor.authorNilsson, Mats
dc.contributor.authorBreidenbach, Johannes
dc.contributor.authorPitkänen, Timo P.
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0003-0693-7665
dc.contributor.orcidhttps://orcid.org/0000-0001-5389-8713
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2026-01-14T14:49:23Z
dc.date.issued2026
dc.description.abstractForest attribute maps are essential for supporting local decision-making regarding forest resource use. Such maps are produced by combining remote sensing and field data through various modeling approaches. When mapping across large areas, spatial gaps in field data used for model training are common. Our study evaluates the performance of three methods—k-Nearest Neighbor (k-NN), Random Forests (RF), and Multi-Layer Perceptron (MLP)—for forest resource mapping across Norway, Sweden, and Finland in an experimental setup with respect to availability of field data around the target area. Models were trained with sample plot sizes (N) ranging from 100 to 3000. RF consistently produced the most accurate predictions in terms of relative bias and RMSE. While spatial gaps in the training data (radius: 7–141 km) affected %RMSE of broad-leaved above ground biomass (AGB), they had minimal impact on %RMSE of both local and country-level predictions of total AGB and volume. For RF with N=3000, %RMSE of total AGB ranged between 53%–55% in Finland and Sweden, and 70%–72% in Norway across gap sizes. However, %bias increased for local predictions across the whole study region with larger gaps: RF with N=500 showed bias of −12%–12% (7 km gap) and −17%–28% (78 km gap). Similarly, country-level %bias of total AGB for Norway increased from −1.7% to −3.7% with larger gaps. In conclusion, spatial gaps in training data can significantly affect bias in predictions. Therefore, forest attribute maps should always be accompanied by metadata describing the training data used.
dc.format.pagerange16 p.
dc.identifier.citationHow to cite: Andras Balazs, Jukka Miettinen, Mats Nilsson, Johannes Breidenbach, Timo P. Pitkänen, Mari Myllymäki, Large-scale forest resource mapping with spatial gaps in the training data: Comparison of different modeling approaches, International Journal of Applied Earth Observation and Geoinformation, Volume 146, 2026, 105104, https://doi.org/10.1016/j.jag.2026.105104.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103658
dc.identifier.urlhttps://doi.org/10.1016/j.jag.2026.105104
dc.identifier.urnURN:NBN:fi-fe202601144034
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber105104
dc.relation.doi10.1016/j.jag.2026.105104
dc.relation.ispartofseriesInternational journal of applied earth observation and geoinformation
dc.relation.issn1569-8432
dc.relation.issn1872-826X
dc.relation.volume146
dc.rightsCC BY 4.0
dc.source.justusid133549
dc.subjectbiomass map
dc.subjectremote sensing
dc.subjectSentinel-2
dc.subjectmissing reference data
dc.subjectrandom forest
dc.subjectk-NN
dc.subjectmulti-layer perceptron
dc.teh41007-00246400
dc.teh41007-00293000
dc.titleLarge-scale forest resource mapping with spatial gaps in the training data: Comparison of different modeling approaches
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Balazs_2026_IntJAppEarthObsGeoinf_Largescale.pdf
Size:
5.91 MB
Format:
Adobe Portable Document Format
Description:
Balazs_2026_IntJAppEarthObsGeoinf_Largescale.pdf

Kokoelmat