Luke
 

The effect of sampling design in model-based small area estimation

dc.contributor.authorKangas, Annika
dc.contributor.authorMyllymäki, Mari
dc.contributor.authorPackalen, Petteri
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8637-5668
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-12-15T11:37:17Z
dc.date.issued2025
dc.description.abstractIt has been shown that simple random sampling is not necessarily the best option, when data is collected for modelling and mapping forest resources. Instead, other sampling designs like systematic or stratified sampling may be better options for those purposes. Furthermore, it has been shown that for stratified sampling, Neyman allocation based on the influence of a given model predictor will produce the smallest estimation error for its coefficient. In this study, we explore if the small-area estimation can be improved by the selection of sampling design, and how that depends on the properties of the small areas. We tested four different sampling designs (simple random sampling, pseudo-systematic sampling, spatially balanced sampling, and stratified sampling) for small area estimation. We also tested two different versions of Neyman allocation: traditional Neyman allocation based on remote sensing variables, and another based on their influences on the estimated regression coefficients. The results show that the model-based small-area estimates were seriously underestimated for the domains with largest volume with all modelling methods, due to the model predictions not capturing exceptionally large values. This could only slightly be alleviated with the choice of a sampling design. On the other hand, the designs weighting the high-end volume domains produced less accurate results for the middle and low-end volume domains. The model-based estimation without field plots for calibrating the model is not capable of identifying the domains with largest values of target variables nor producing unbiased estimates for them. Thus, it is important to develop calibration methods applicable also for non-sampled domains.
dc.format.pagerange13 p.
dc.identifier.citationHow to cite: Annika Kangas, Mari Myllymäki, Petteri Packalen, The effect of sampling design in model-based small area estimation, Forestry: An International Journal of Forest Research, 2025;, cpaf076, https://doi.org/10.1093/forestry/cpaf076
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103412
dc.identifier.urlhttps://doi.org/10.1093/forestry/cpaf076
dc.identifier.urnURN:NBN:fi-fe20251215119515
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherOxford University Press
dc.relation.articlenumbercpaf076
dc.relation.doi10.1093/forestry/cpaf076
dc.relation.ispartofseriesForestry
dc.relation.issn0015-752X
dc.relation.issn1464-3626
dc.rightsCC BY 4.0
dc.source.justusid130758
dc.subjectmodel-based
dc.subjectestimation
dc.subjectsampling design
dc.subjectsmall-area
dc.subjectsimulation
dc.subjectforest resources
dc.teh41007-00246402
dc.teh41007-00259901
dc.teh41007-00293002
dc.titleThe effect of sampling design in model-based small area estimation
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kangas-etal-2025-cpaf076.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
Kangas-etal-2025-cpaf076.pdf

Kokoelmat