Luke
 

Automatic detection of root rot and resin in felled Scots pine stems using convolutional neural networks

dc.contributor.authorHolmström, Eero
dc.contributor.authorKainulainen, Henna
dc.contributor.authorRaatevaara, Antti
dc.contributor.authorPohjankukka, Jonne
dc.contributor.authorPiri, Tuula
dc.contributor.authorHonkaniemi, Juha
dc.contributor.authorUusitalo, Jori
dc.contributor.authorPeltoniemi, Mikko
dc.contributor.authorLehtonen, Aleksi
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100111010
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100310610
dc.contributor.orcidhttps://orcid.org/0000-0002-5808-2577
dc.contributor.orcidhttps://orcid.org/0000-0001-8690-3726
dc.contributor.orcidhttps://orcid.org/0000-0002-8249-554X
dc.contributor.orcidhttps://orcid.org/0000-0003-2028-6969
dc.contributor.orcidhttps://orcid.org/0000-0003-1388-0388
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-03-19T10:12:41Z
dc.date.accessioned2025-05-28T08:37:42Z
dc.date.available2024-03-19T10:12:41Z
dc.date.issued2024
dc.description.abstractRoot rot caused by Heterobasidion spp. is the most serious fungal disease of conifer forests in the Northern Hemisphere. In Scots pine (Pinus sylvestris L.) stands infected by H. annosum, root rot reduces sawlog quality due to decay and resin-soaked patches. Automatically detecting the disease during harvesting operations could be used to optimize bucking as well as to efficiently collect data on root-rot incidence within forest stands and at larger geographical scales. In this study, we develop deep learning models based on convolutional neural networks to automatically detect root rot disease and the presence of resinous wood in stem end images of Scots pine. In addition, we study the effect of pre-filtering the images via a classical texture operator prior to model development. Using transfer learning on pre-trained feature extractor networks, we first construct classifiers for detecting severely rotten wood in stem end images. Second, we develop a classifier for detecting the presence of resin outside branch knots. In rot detection, using regular RGB images, our final model reaches a binary classification accuracy of (63 ± 6)% on the independent test data, where the error is the standard error. Pre-processing the images using the classical texture operator increases the final classification accuracy to (70 ± 6)%. To detect only resin using regular RGB images, we find an accuracy of (80 ± 6)%. Finally, we discuss the operational implications and requirements of implementing such computer vision algorithms in the next generation of forest harvesters.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange153-165
dc.identifier.citationHow to cite: Holmström, E., Kainulainen, H., Raatevaara, A., Pohjankukka, J., Piri, T., Honkaniemi, J., … Lehtonen, A. (2024). Automatic detection of root rot and resin in felled Scots pine stems using convolutional neural networks. International Journal of Forest Engineering, 35(2), 153–165. https://doi.org/10.1080/14942119.2024.2327247
dc.identifier.olddbid497324
dc.identifier.oldhandle10024/554756
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14432
dc.identifier.urlhttps://doi.org/10.1080/14942119.2024.2327247
dc.identifier.urnURN:NBN:fi-fe2024091873704
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationon
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherTaylor & Francis
dc.relation.doi10.1080/14942119.2024.2327247
dc.relation.ispartofseriesInternational journal of forest engineering
dc.relation.issn1494-2119
dc.relation.issn1913-2220
dc.relation.numberinseries2
dc.relation.volume35
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554756
dc.subjectHeterobasidion root rot
dc.subjectwood quality
dc.subjectdeep learning
dc.subjectbucking optimization
dc.teh41007-00220000
dc.teh41007-00220001
dc.teh41007-00197701
dc.titleAutomatic detection of root rot and resin in felled Scots pine stems using convolutional neural networks
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Automatic_detection_of_root_rot_and_resin_in_felled_Scots_pine_stems_using_convolutional_neural_networks.pdf
Size:
8.44 MB
Format:
Adobe Portable Document Format
Description:
Automatic_detection_of_root_rot_and_resin_in_felled_Scots_pine_stems_using_convolutional_neural_networks.pdf

Kokoelmat