Luke
 

Alleviating small sample problem in continuous forest monitoring with remote sensing-assisted Copulas

dc.contributor.authorCheng, Xinjie
dc.contributor.authorHou, Zhengyang
dc.contributor.authorKangas, Annika
dc.contributor.authorRenaud, Jean-Pierre
dc.contributor.authorTang, Hao
dc.contributor.authorZeng, Weisheng
dc.contributor.authorXu, Qing
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8637-5668
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-28T13:16:23Z
dc.date.accessioned2025-05-28T07:10:37Z
dc.date.available2025-01-28T13:16:23Z
dc.date.issued2025
dc.description.abstractWith model-assisted (MA) estimation, remote sensing (RS) has provided auxiliary modeling data to enhance precision in estimators of forest parameters for continuous forest monitoring as mandated by various official reporting instruments. However, model-assisted estimation is largely reliant on a sample resulting from costly field surveys to meet the precision standard mandated by these instruments. While a large sample is more likely to represent the population in question and ensure meeting the prescribed precision, it is crucial to reduce costs by finding a balance between precision and sample size. Consequently, this study aims to (1) develop and demonstrate estimation using Copulas modeling; (2) propose a sample size optimization procedure for MA estimators in the context of continuous forest monitoring; and (3) compare survey precisions of the estimators using Copulas and Weighted Least Squares regression (WLS) as a function of sample sizes. Four main conclusions are relevant: for both Burkina Faso (BF) and Genhe (GH) study area, (1) Copulas outperforms WLS in modeling and prediction, both in terms of mean values and maximum/minimum values; (2) Copulas consistently demonstrates superior performance and precision across varying sample sizes compared to the WLS with MA estimators; (3) a straightforward sample size optimization approach reveals that variance estimates of Copulas remain lower than those of WLS as the sample size decreases in monitoring surveys; (4) Copulas requires about 20% smaller sample size than WLS does when achieving a specified precision, suggesting enhanced efficiency. Overall, Copulas appears promising to satisfy the precision, cost-efficiency, and flexibility requirements of monitoring surveys, particularly in situations involving small sample sizes.
dc.format.bitstreamtrue
dc.format.pagerange12 p.
dc.identifier.citationHow to cite: Xinjie Cheng, Zhengyang Hou, Annika Kangas, Jean-Pierre Renaud, Hao Tang, Weisheng Zeng, Qing Xu, Alleviating small sample problem in continuous forest monitoring with remote sensing-assisted Copulas, Ecological Indicators, Volume 171, 2025, 113132, https://doi.org/10.1016/j.ecolind.2025.113132
dc.identifier.olddbid498643
dc.identifier.oldhandle10024/556071
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/12131
dc.identifier.urlhttps://doi.org/10.1016/j.ecolind.2025.113132
dc.identifier.urnURN:NBN:fi-fe202501287587
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber113132
dc.relation.doi10.1016/j.ecolind.2025.113132
dc.relation.ispartofseriesEcological indicators
dc.relation.issn1470-160X
dc.relation.issn1872-7034
dc.relation.volume171
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556071
dc.subjectsurvey sampling
dc.subjectmachine learning
dc.subjectmodel-assisted estimators
dc.subjectsample size optimization
dc.teh41007-00261502
dc.titleAlleviating small sample problem in continuous forest monitoring with remote sensing-assisted Copulas
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Cheng_etal_2025_EcolIndic_Alleviating_small_sample.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format
Description:
Cheng_etal_2025_EcolIndic_Alleviating_small_sample.pdf

Kokoelmat