Luke
 

A kernel-based test for the first-order separability of spatio-temporal point processes

dc.contributor.authorGhorbani, Mohammad
dc.contributor.authorVafaei, Nafiseh
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-08-14T09:59:19Z
dc.date.issued2025
dc.description.abstractWe present an innovative statistical test designed to assess the first-order separability of a spatio-temporal point process. Our proposed test employs block permutations and a novel test statistic that incorporates a machine learning technique known as the Hilbert–Schmidt independence criterion. To enhance the practicality of the criterion, we apply the kernel trick. The block permutations are designed to maintain the second-order structure of the point pattern, disrupting it only at the block borders. This design enables the application of our test to a general spatio-temporal point process, which may exhibit small-scale clustering or regularity. We investigated the empirical level of the block permutation-based tests with the new and two previously proposed test statistics for clustered and regular point processes, represented in our study by log Gaussian Cox processes and determinantal point processes. By comparing our results with those obtained from a previously proposed permutation-based test, we confirmed the effectiveness of our method in terms of significance level, power, and notably computational cost. We applied the test to real-world datasets, namely the UK’s 2001 foot-and-mouth disease epidemic and varicella data from Valencia.
dc.format.pagerange32 p.
dc.identifier.citationHow to cite: Ghorbani, M., Vafaei, N. & Myllymäki, M. A kernel-based test for the first-order separability of spatio-temporal point processes. TEST (2025). https://doi.org/10.1007/s11749-025-00972-y
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99824
dc.identifier.urlhttps://doi.org/10.1007/s11749-025-00972-y
dc.identifier.urnURN:NBN:fi-fe2025081482611
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Nature
dc.relation.doi10.1007/s11749-025-00972-y
dc.relation.ispartofseriesTest
dc.relation.issn1133-0686
dc.relation.issn1863-8260
dc.rightsCC BY 4.0
dc.source.justusid124021
dc.subjectblock permutation
dc.subjectfeature space
dc.subjectkernel mean embedding
dc.subjectmachine learning
dc.subjectreproducing kernel Hilbert space
dc.subjectseparability of intensity function
dc.subjectspatio-temporal point process
dc.teh41007-00075000
dc.titleA kernel-based test for the first-order separability of spatio-temporal point processes
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Ghorbani_etal_2025_TEST_A_kernelbased.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
Ghorbani_etal_2025_TEST_A_kernelbased.pdf

Kokoelmat