Luke
 

Estimation of boreal forest biomass from ICESat-2 data using hierarchical hybrid inference

dc.contributor.authorVarvia, Petri
dc.contributor.authorSaarela, Svetlana
dc.contributor.authorMaltamo, Matti
dc.contributor.authorPackalen, Petteri
dc.contributor.authorGobakken, Terje
dc.contributor.authorNæsset, Erik
dc.contributor.authorStåhl, Göran
dc.contributor.authorKorhonen, Lauri
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-12-19T08:23:58Z
dc.date.accessioned2025-05-28T08:45:23Z
dc.date.available2024-12-19T08:23:58Z
dc.date.issued2024
dc.description.abstractThe ICESat-2, launched in 2018, carries the ATLAS instrument, which is a photon-counting spaceborne lidar that provides profile samples over the terrain. While primarily designed for snow and ice monitoring, there has been a great interest in using ICESat-2 to predict forest above-ground biomass density (AGBD). As ICESat-2 is on a polar orbit, it provides good spatial coverage of boreal forests. The aim of this study is to evaluate the estimation of mean AGBD from ICESat-2 data using a hierarchical modeling approach combined with rigorous statistical inference. We propose a hierarchical hybrid inference approach for uncertainty quantification of the average AGBD of the area of interest estimated directly from a sample of ICESat-2 lidar profiles. Our approach models the errors coming from the multiple modeling steps, including the allometric models used for predicting tree-level AGB. For testing the procedure, we have data from two adjacent study sites, denoted Valtimo and Nurmes, of which Valtimo site is used for model training and Nurmes for validation. The ICESat-2 estimated mean AGBD in the Nurmes validation area was 65.7 ± 1.9 Mg/ha (relative standard error of 2.9%). The local reference hierarchical model-based estimate obtained from wall-to-wall airborne lidar data was 63.9 ± 0.6 Mg/ha (relative standard error of 1.0%). The reference estimate was within the 95% confidence interval of the ICESat-2 hierarchical hybrid estimate. The small standard errors indicate that the proposed method is useful for AGBD assessment. However, some sources of error were not accounted for in the study and thus the real uncertainties are probably slightly larger than those reported.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange11 p.
dc.identifier.olddbid498308
dc.identifier.oldhandle10024/555736
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14631
dc.identifier.urlhttp://dx.doi.org/10.1016/j.rse.2024.114249
dc.identifier.urnURN:NBN:fi-fe20241219104955
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber114249
dc.relation.doi10.1016/j.rse.2024.114249
dc.relation.ispartofseriesRemote sensing of environment
dc.relation.issn0034-4257
dc.relation.issn1879-0704
dc.relation.volume311
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555736
dc.subjectICESat-2
dc.subjectabove-ground biomass
dc.subjectboreal forest
dc.subjectinference
dc.subjectlidar
dc.teh41007-00261502
dc.titleEstimation of boreal forest biomass from ICESat-2 data using hierarchical hybrid inference
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Varvia-etal-2024-Estimation_of_boreal_forest_biomass.pdf
Size:
3.2 MB
Format:
Adobe Portable Document Format
Description:
Varvia-etal-2024-Estimation_of_boreal_forest_biomass.pdf

Kokoelmat