Hyppää sisältöön
Hakuohjeet
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • På svenska
  • In English
  • Henkilökunnan kirjautuminen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite

Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves

Pavicic, Mirko; Overmyer, Kirk; Rehman, Attiq ur; Jones, Piet; Jacobson, Daniel; Himanen, Kristiina (2021)

 
Avaa tiedosto
Pavicic_et_al_2021.pdf (1.384Mt)
Lataukset 


Pavicic, Mirko
Overmyer, Kirk
Rehman, Attiq ur
Jones, Piet
Jacobson, Daniel
Himanen, Kristiina

Julkaisusarja
Plants

Volyymi
10

Numero
1

Sivut
14 p.


MDPI AG
2021
doi:10.3390/plants10010158
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi-fe202101181972
Tiivistelmä
Image-based symptom scoring of plant diseases is a powerful tool for associating disease
resistance with plant genotypes. Advancements in technology have enabled new imaging and image processing strategies for statistical analysis of time-course experiments. There are several tools available for analyzing symptoms on leaves and fruits of crop plants, but only a few are available for the model plant Arabidopsis thaliana (Arabidopsis). Arabidopsis and the model fungus Botrytis cinerea (Botrytis) comprise a potent model pathosystem for the identification of signaling pathways conferring immunity against this broad host-range necrotrophic fungus. Here, we present two strategies to assess severity and symptom progression of Botrytis infection over time in Arabidopsis leaves. Thus, a pixel classification strategy using color hue values from red-green-blue (RGB) images and a random forest algorithm was used to establish necrotic, chlorotic, and healthy leaf areas. Secondly, using chlorophyll fluorescence (ChlFl) imaging, the maximum quantum yield of photosystem II (Fv/Fm) was determined to define diseased areas and their proportion per total leaf area. Both RGB and ChlFl imaging strategies were employed to track disease progression over time. This has provided a robust and sensitive method for detecting sensitive or resistant genetic backgrounds. A full methodological workflow, from plant culture to data analysis, is described.
Collections
  • Julkaisut [87086]
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus
 

 

Selaa kokoelmaa

NimekkeetTekijätJulkaisutyyppitJulkaisuajatUusimmatAsiasanatSivukartta
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus