Luke
 

Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves

dc.contributor.authorPavicic, Mirko
dc.contributor.authorOvermyer, Kirk
dc.contributor.authorRehman, Attiq ur
dc.contributor.authorJones, Piet
dc.contributor.authorJacobson, Daniel
dc.contributor.authorHimanen, Kristiina
dc.contributor.departmentid4100210510
dc.contributor.orcidhttps://orcid.org/0000-0002-0131-3928
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2021-01-18T08:05:08Z
dc.date.accessioned2025-05-27T18:45:26Z
dc.date.available2021-01-18T08:05:08Z
dc.date.issued2021
dc.description.abstractImage-based symptom scoring of plant diseases is a powerful tool for associating disease resistance with plant genotypes. Advancements in technology have enabled new imaging and image processing strategies for statistical analysis of time-course experiments. There are several tools available for analyzing symptoms on leaves and fruits of crop plants, but only a few are available for the model plant Arabidopsis thaliana (Arabidopsis). Arabidopsis and the model fungus Botrytis cinerea (Botrytis) comprise a potent model pathosystem for the identification of signaling pathways conferring immunity against this broad host-range necrotrophic fungus. Here, we present two strategies to assess severity and symptom progression of Botrytis infection over time in Arabidopsis leaves. Thus, a pixel classification strategy using color hue values from red-green-blue (RGB) images and a random forest algorithm was used to establish necrotic, chlorotic, and healthy leaf areas. Secondly, using chlorophyll fluorescence (ChlFl) imaging, the maximum quantum yield of photosystem II (Fv/Fm) was determined to define diseased areas and their proportion per total leaf area. Both RGB and ChlFl imaging strategies were employed to track disease progression over time. This has provided a robust and sensitive method for detecting sensitive or resistant genetic backgrounds. A full methodological workflow, from plant culture to data analysis, is described.
dc.description.vuosik2021
dc.format.bitstreamtrue
dc.format.pagerange14 p.
dc.identifier.olddbid489538
dc.identifier.oldhandle10024/546998
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/6440
dc.identifier.urnURN:NBN:fi-fe202101181972
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline414
dc.okm.internationalcopublicationon
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI AG
dc.relation.articlenumber158
dc.relation.doi10.3390/plants10010158
dc.relation.ispartofseriesPlants
dc.relation.issn2223-7747
dc.relation.issn2223-7747
dc.relation.numberinseries1
dc.relation.volume10
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/546998
dc.subject.ysoArabidopsis
dc.subject.ysohigh-throughput
dc.subject.ysoplant phenotyping
dc.subject.ysoimaging sensors
dc.subject.ysoBotrytis
dc.subject.ysodisease symptom
dc.subject.ysochlorophyll florescence
dc.tehOHFO-Alku-2
dc.titleImage-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Pavicic_et_al_2021.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:
Pavicic_et_al_2021.pdf

Kokoelmat