Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves
dc.contributor.author | Pavicic, Mirko | |
dc.contributor.author | Overmyer, Kirk | |
dc.contributor.author | Rehman, Attiq ur | |
dc.contributor.author | Jones, Piet | |
dc.contributor.author | Jacobson, Daniel | |
dc.contributor.author | Himanen, Kristiina | |
dc.contributor.departmentid | 4100210510 | |
dc.contributor.orcid | https://orcid.org/0000-0002-0131-3928 | |
dc.contributor.organization | Luonnonvarakeskus | |
dc.date.accessioned | 2021-01-18T08:05:08Z | |
dc.date.accessioned | 2025-05-27T18:45:26Z | |
dc.date.available | 2021-01-18T08:05:08Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Image-based symptom scoring of plant diseases is a powerful tool for associating disease resistance with plant genotypes. Advancements in technology have enabled new imaging and image processing strategies for statistical analysis of time-course experiments. There are several tools available for analyzing symptoms on leaves and fruits of crop plants, but only a few are available for the model plant Arabidopsis thaliana (Arabidopsis). Arabidopsis and the model fungus Botrytis cinerea (Botrytis) comprise a potent model pathosystem for the identification of signaling pathways conferring immunity against this broad host-range necrotrophic fungus. Here, we present two strategies to assess severity and symptom progression of Botrytis infection over time in Arabidopsis leaves. Thus, a pixel classification strategy using color hue values from red-green-blue (RGB) images and a random forest algorithm was used to establish necrotic, chlorotic, and healthy leaf areas. Secondly, using chlorophyll fluorescence (ChlFl) imaging, the maximum quantum yield of photosystem II (Fv/Fm) was determined to define diseased areas and their proportion per total leaf area. Both RGB and ChlFl imaging strategies were employed to track disease progression over time. This has provided a robust and sensitive method for detecting sensitive or resistant genetic backgrounds. A full methodological workflow, from plant culture to data analysis, is described. | |
dc.description.vuosik | 2021 | |
dc.format.bitstream | true | |
dc.format.pagerange | 14 p. | |
dc.identifier.olddbid | 489538 | |
dc.identifier.oldhandle | 10024/546998 | |
dc.identifier.uri | https://jukuri.luke.fi/handle/11111/6440 | |
dc.identifier.urn | URN:NBN:fi-fe202101181972 | |
dc.language.iso | en | |
dc.okm.corporatecopublication | ei | |
dc.okm.discipline | 414 | |
dc.okm.internationalcopublication | on | |
dc.okm.openaccess | 1 = Open access -julkaisukanavassa ilmestynyt julkaisu | |
dc.okm.selfarchived | on | |
dc.publisher | MDPI AG | |
dc.relation.articlenumber | 158 | |
dc.relation.doi | 10.3390/plants10010158 | |
dc.relation.ispartofseries | Plants | |
dc.relation.issn | 2223-7747 | |
dc.relation.issn | 2223-7747 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 10 | |
dc.rights | CC BY 4.0 | |
dc.source.identifier | https://jukuri.luke.fi/handle/10024/546998 | |
dc.subject.yso | Arabidopsis | |
dc.subject.yso | high-throughput | |
dc.subject.yso | plant phenotyping | |
dc.subject.yso | imaging sensors | |
dc.subject.yso | Botrytis | |
dc.subject.yso | disease symptom | |
dc.subject.yso | chlorophyll florescence | |
dc.teh | OHFO-Alku-2 | |
dc.title | Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves | |
dc.type | publication | |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| | |
dc.type.version | fi=Publisher's version|sv=Publisher's version|en=Publisher's version| |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Pavicic_et_al_2021.pdf
- Size:
- 1.38 MB
- Format:
- Adobe Portable Document Format
- Description:
- Pavicic_et_al_2021.pdf