Analysis of elastic and plastic behaviour in untreated pine wood under scratch test loads combining X-ray computed tomography and finite element simulations
| dc.contributor.author | Ronkainen, Helena | |
| dc.contributor.author | Harjupatana, Tero | |
| dc.contributor.author | Miettinen, Arttu | |
| dc.contributor.author | Balobanov, Viacheslav | |
| dc.contributor.author | Venäläinen, Martti | |
| dc.contributor.author | Harju, Anni | |
| dc.contributor.author | Möttönen, Veikko | |
| dc.contributor.author | Fortino, Stefania | |
| dc.contributor.departmentid | 4100210610 | |
| dc.contributor.departmentid | 4100210610 | |
| dc.contributor.departmentid | 4100210610 | |
| dc.contributor.orcid | https://orcid.org/0000-0003-4473-6370 | |
| dc.contributor.organization | Luonnonvarakeskus | |
| dc.date.accessioned | 2026-01-14T12:36:53Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Wood is an anisotropic material, which affects its performance under different loading conditions. To understand the origin of surface failures occurring in wood under mechanical disintegration loads, an accurate investigation of its elastic and plastic behaviour is required. This study introduces a methodology that integrates experimental scratch testing, X-ray micro-computed tomography (µCT), and finite element simulations to examine the elastic and plastic deformation and failure behaviour of untreated pine wood under scratch loading. In the existing literature, scratch testing is primarily employed to assess coating adhesion or material abrasion resistance; its use for probing the mechanical response of wood remains limited. In the present study, scratches were applied to pine specimens in the radial, tangential, and longitudinal directions of wood using a diamond indenter under constant normal loads perpendicular to the scratched surface. The permanent residual depths measured by (µCT) were compared with FE-predicted deformations. The selected methodology enables quantification of the relationship between wood structure, loading conditions, and scratch performance. The results demonstrated that the regions with higher density favoured elastic deformation, whereas the residual scratch depth, reflecting plastic deformation, provided a reliable indicator of scratch resistance, exhibiting higher scratch resistance for the higher density wood. In particular, the wood with higher density showed residual depths in the range of 53–144 µm in radial direction scratches, whereas the less dense wood showed values between 90 and 300 µm. (µCT) imaging also revealed detailed deformation mechanisms and fracture pathways that develop under scratch-type loading. By coupling (µCT) with FE modelling for wood scratch mechanics, the work deepens the understanding of how wood microstructure responds to different scratch loading conditions. The findings can serve as a scientific reference for future experimental and numerical investigations of scratching, cutting and other disintegration loads in untreated wood and wood-based composites at the microscale. | |
| dc.format.pagerange | 29 p. | |
| dc.identifier.citation | How to cite: Ronkainen, H., Harjupatana, T., Miettinen, A. et al. Analysis of elastic and plastic behaviour in untreated pine wood under scratch test loads combining X-ray computed tomography and finite element simulations. J Mater Sci (2026). https://doi.org/10.1007/s10853-025-12141-5 | |
| dc.identifier.uri | https://jukuri.luke.fi/handle/11111/103655 | |
| dc.identifier.url | https://doi.org/10.1007/s10853-025-12141-5 | |
| dc.identifier.urn | URN:NBN:fi-fe202601144013 | |
| dc.language.iso | en | |
| dc.okm.avoinsaatavuuskytkin | 1 = Avoimesti saatavilla | |
| dc.okm.corporatecopublication | ei | |
| dc.okm.discipline | 4112 | |
| dc.okm.internationalcopublication | ei | |
| dc.okm.julkaisukanavaoa | 2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu | |
| dc.okm.selfarchived | on | |
| dc.publisher | Springer Nature | |
| dc.relation.doi | 10.1007/s10853-025-12141-5 | |
| dc.relation.ispartofseries | Journal of materials science | |
| dc.relation.issn | 0022-2461 | |
| dc.relation.issn | 1573-4803 | |
| dc.rights | CC BY 4.0 | |
| dc.source.justusid | 133494 | |
| dc.subject | elastic and plastic deformation | |
| dc.subject | wood microstructure | |
| dc.subject | wood density | |
| dc.subject | wood anisotropy | |
| dc.subject | scratch testing | |
| dc.teh | 41007-00247101 | |
| dc.title | Analysis of elastic and plastic behaviour in untreated pine wood under scratch test loads combining X-ray computed tomography and finite element simulations | |
| dc.type | publication | |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| | |
| dc.type.version | fi=Publisher's version|sv=Publisher's version|en=Publisher's version| |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Ronkainen_etal_2026_JMaterSci_Analysis.pdf
- Size:
- 13.27 MB
- Format:
- Adobe Portable Document Format
- Description:
- Ronkainen_etal_2026_JMaterSci_Analysis.pdf
