Luke
 

Evaluation of forage grass biomass estimation models using multispectral drone imaging across multiple sites

dc.contributor.authorOliveira, Raquel A.
dc.contributor.authorNäsi, Roope
dc.contributor.authorEdström, Jonas
dc.contributor.authorPitkänen, Joel
dc.contributor.authorKorhonen, Panu
dc.contributor.authorNiemeläinen, Oiva
dc.contributor.authorKoivumäki, Niko
dc.contributor.authorKaivosoja, Jere
dc.contributor.authorHonkavaara, Eija
dc.contributor.departmentid4100110210
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100211410
dc.contributor.orcidhttps://orcid.org/0000-0001-6721-2065
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-12-02T12:56:27Z
dc.date.issued2025
dc.description.abstractSustainable grassland management practices enhance key ecological functions, including carbon sequestration, biodiversity conservation, and the maintenance of soil fertility essential for climate change mitigation. Accurate and reliable estimation of grass biomass is essential for decision making on harvesting time and rate of fertilizer application. Remote sensing and data analysis technologies offer unprecedented opportunities for monitoring grassland dynamics, yet methodological challenges persist in generalizing remote sensing-based models for different growths and different areas. This study investigates the estimation of grass biomass of different growth stages during two years using multispectral UAS-based remote sensing. A leave-one-out cross-validation was conducted using five harvest datasets to train and test random forest (RF) and partial least squares regression (PLSR) models, assessing estimation accuracy within individual sites. This was followed by a cross-site evaluation, where models trained using data from other locations were tested on each harvest date to evaluate model generalizability. The estimation models within the Maaninka site yielded at the best NRMSEs 14.7%, but exceeded 55% on two cutting dates. Incorporating data from multiple sites improved generalization or maintained similar accuracy across test dates. The findings indicated that using data from various locations can improve model stability, especially in cases where local data does not provide strong predictive information.
dc.format.pagerange241-246
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103322
dc.identifier.urlhttps://doi.org/10.5194/isprs-archives-xlviii-2-w11-2025-241-2025
dc.identifier.urnURN:NBN:fi-fe20251202113603
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline222
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherISPRS Council
dc.relation.doi10.5194/isprs-archives-xlviii-2-w11-2025-241-2025
dc.relation.ispartofseriesInternational archives of the photogrammetry, remote sensing and spatial information sciences
dc.relation.issn1682-1750
dc.relation.issn2194-9034
dc.relation.volume48-2/W11-2025
dc.rightsCC BY 4.0
dc.source.justusid129385
dc.subjectmultispectral
dc.subjectUnmanned Aerial System
dc.subjectUAS
dc.subjectgrass
dc.subjectbiomass
dc.subjectmachine learning
dc.teh41007-00317601
dc.teh41007-00287801
dc.titleEvaluation of forage grass biomass estimation models using multispectral drone imaging across multiple sites
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Oliveira_etal-2025-Evaluation_of_forage_grass_biomass.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Oliveira_etal-2025-Evaluation_of_forage_grass_biomass.pdf

Kokoelmat