Luke
 

Speeding up UAV-based crop variability assessment through a data fusion approach using spatial interpolation for site-specific management

dc.contributor.authorVélez, Sergio
dc.contributor.authorAriza-Sentís, Mar
dc.contributor.authorPanić, Marko
dc.contributor.authorIvošević, Bojana
dc.contributor.authorStefanović, Dimitrije
dc.contributor.authorKaivosoja, Jere
dc.contributor.authorValente, João
dc.contributor.departmentid4100210710
dc.contributor.orcidhttps://orcid.org/0000-0001-6721-2065
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-12-18T10:58:25Z
dc.date.accessioned2025-05-28T08:44:10Z
dc.date.available2024-12-18T10:58:25Z
dc.date.issued2024
dc.description.abstractInnovations in precision agriculture enhance complex tasks, reduce environmental impact, and increase food production and cost efficiency. One of the main challenges is ensuring rapid information availability for autonomous vehicles and standardizing processes across platforms to maximize interoperability. The lack of drone technology standardisation, communication barriers, high costs, and post-processing requirements sometimes hinder their widespread use in agriculture. This research introduces a standardized data fusion framework for creating real-time spatial variability maps using images from different Unmanned Aerial Vehicles (UAVs) for Site-Specific Crop Management (SSM). Two spatial interpolation methods were used (Inverse Distance Weight, IDW, and Triangulated Irregular Networks, TIN), selected for their computational efficiency and input flexibility. The proposed framework can use different UAV image sources and offers versatility, speed, and efficiency, consuming up to 98 % less time, energy, and computing requirements than standard photogrammetry techniques, providing rapid field information, allowing edge computing incorporation into the UAV data acquisition phase. Experiments conducted in Spain, Serbia, and Finland in 2022 under the H2020 FlexiGroBots project demonstrated a strong correlation between results from this method and those from standard photogrammetry techniques (up to r = 0.93). In addition, the correlation with Sentinel 2 satellite images was as strong as that obtained with photogrammetry-based orthomosaics (up to r = 0.8). The proposed approach could support irrigation leak detection, soil parameter estimation, weed management, and satellite integration for agriculture.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange14 p.
dc.identifier.olddbid498284
dc.identifier.oldhandle10024/555712
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14618
dc.identifier.urlhttp://dx.doi.org/10.1016/j.atech.2024.100488
dc.identifier.urnURN:NBN:fi-fe20241218104202
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline222
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber100488
dc.relation.doi10.1016/j.atech.2024.100488
dc.relation.ispartofseriesSmart agricultural technology
dc.relation.issn2772-3755
dc.relation.volume8
dc.rightsCC BY-NC-ND 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555712
dc.subjectspatial variability
dc.subjectTIN
dc.subjectIDW
dc.subjectremote sensing
dc.subjectsatellite
dc.subjectprecision agriculture
dc.teh41007-00284300
dc.teh41007-00282601
dc.titleSpeeding up UAV-based crop variability assessment through a data fusion approach using spatial interpolation for site-specific management
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Velez_etal-2024-Speeding_up_UAV-based-crop-variability.pdf
Size:
23.53 MB
Format:
Adobe Portable Document Format
Description:
Velez_etal-2024-Speeding_up_UAV-based-crop-variability.pdf

Kokoelmat