Luke
 

Global test for covariate significance in quantile regression

dc.contributor.authorMrkvička, Tomáš
dc.contributor.authorKonstantinou, Konstantinos
dc.contributor.authorKuronen, Mikko
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8089-7895
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2026-01-23T08:23:54Z
dc.date.issued2026
dc.description.abstractQuantile regression is used to study effects of covariates on a particular quantile of the data distribution. Here we are interested in the question whether a covariate has any effect on the entire data distribution, i.e., on any of the quantiles. To this end, we treat all the quantiles simultaneously and consider global tests for the existence of the covariate effect in the presence of nuisance covariates. This global test for covariate significance in quantile regression can be used as the extension of linear regression or as the extension of distribution comparison in the sense of Kolmogorov-Smirnov test or as the extension of partial correlation. The proposed method is based on pointwise coefficients, permutations and global envelope tests. The global envelope test serves as the multiple test adjustment procedure controlling the family-wise error rate and provides the graphical interpretation which automatically shows the quantiles or the levels of categorical covariate responsible for the rejection. The Freedman-Lane permutation strategy showed liberality of the test for extreme quantiles, therefore we propose four alternatives that work well even for extreme quantiles and are suitable in different conditions. One of the strategies is suitable in a general situation, while others under more specific conditions. We show asymptotic exactness of the proposed permutation procedures and present a simulation study to inspect the performance of these strategies, and we apply the chosen strategies to two data examples.
dc.format.pagerange24 p.
dc.identifier.citationHow to cite: Mrkvička, T., Konstantinou, K., Kuronen, M. et al. Global test for covariate significance in quantile regression. Stat Comput 36, 66 (2026). https://doi.org/10.1007/s11222-025-10774-9
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103782
dc.identifier.urlhttps://doi.org/10.1007/s11222-025-10774-9
dc.identifier.urnURN:NBN:fi-fe202601238194
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Nature
dc.relation.articlenumber66
dc.relation.doi10.1007/s11222-025-10774-9
dc.relation.ispartofseriesStatistics and computing
dc.relation.issn0960-3174
dc.relation.issn1573-1375
dc.relation.numberinseries2
dc.relation.volume36
dc.rightsCC BY 4.0
dc.source.justusid134314
dc.subjectdistribution comparison
dc.subjectglobal envelope test
dc.subjectmultiple comparison problem
dc.subjectpermutation test
dc.subjectsignificance testing
dc.subjectsimultaneous testing
dc.teh41007-00229001
dc.teh41007-00293000
dc.titleGlobal test for covariate significance in quantile regression
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Mrkvicka_etal_2026_StatComp_Global_test.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Mrkvicka_etal_2026_StatComp_Global_test.pdf

Kokoelmat