Luke
 

A computationally feasible multi-trait single-step genomic prediction model with trait-specific marker weights

dc.contributor.authorStrandén, Ismo
dc.contributor.authorJenko, Janez
dc.contributor.departmentid4100111010
dc.contributor.orcidhttps://orcid.org/0000-0003-0161-2618
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-08-20T12:33:52Z
dc.date.accessioned2025-05-28T11:23:31Z
dc.date.available2024-08-20T12:33:52Z
dc.date.issued2024
dc.description.abstractBackground Regions of genome-wide marker data may have differing influences on the evaluated traits. This can be reflected in the genomic models by assigning different weights to the markers, which can enhance the accuracy of genomic prediction. However, the standard multi-trait single-step genomic evaluation model can be computationally infeasible when the traits are allowed to have different marker weights. Results In this study, we developed and implemented a multi-trait single-step single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) model for large genomic data evaluations that allows for the use of precomputed trait-specific marker weights. The modifications to the standard single-step SNPBLUP model were minor and did not significantly increase the preprocessing workload. The model was tested using simulated data and marker weights precomputed using BayesA. Based on the results, memory requirements and computing time per iteration slightly increased compared to the standard single-step model without weights. Moreover, convergence of the model was slower when using marker weights, which resulted in longer total computing time. The use of marker weights, however, improved prediction accuracy. Conclusions We investigated a single-step SNPBLUP model that can be used to accommodate trait-specific marker weights. The marker-weighted single-step model improved prediction accuracy. The approach can be used for large genomic data evaluations using precomputed marker weights.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange10 p.
dc.identifier.citationHow to cite: Strandén, I., Jenko, J. A computationally feasible multi-trait single-step genomic prediction model with trait-specific marker weights. Genet Sel Evol 56, 58 (2024). https://doi.org/10.1186/s12711-024-00926-2
dc.identifier.olddbid497738
dc.identifier.oldhandle10024/555167
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/21909
dc.identifier.urlhttps://doi.org/10.1186/s12711-024-00926-2
dc.identifier.urnURN:NBN:fi-fe2024082065711
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu1810
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2024
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationon
dc.okm.discipline412
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherBioMed Central
dc.relation.articlenumber58
dc.relation.doi10.1186/s12711-024-00926-2
dc.relation.ispartofseriesGenetics selection evolution
dc.relation.issn0999-193X
dc.relation.issn1297-9686
dc.relation.numberinseries1
dc.relation.volume56
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555167
dc.subjectgenomic prediction model
dc.subjectmarkers
dc.teh41007-00014600
dc.titleA computationally feasible multi-trait single-step genomic prediction model with trait-specific marker weights
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Stranden_Jenko_2024_GenSelEvol_A_computationally_feasible_multi-trait.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
Stranden_Jenko_2024_GenSelEvol_A_computationally_feasible_multi-trait.pdf

Kokoelmat