Luke
 

Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning

dc.contributor.authorRana, Parvez
dc.contributor.authorPopescu, Sorin
dc.contributor.authorTolvanen, Anne
dc.contributor.authorGautam, Basanta
dc.contributor.authorSrinivasan, Shruthi
dc.contributor.authorTokola, Timo
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100610210
dc.contributor.orcidhttps://orcid.org/0000-0002-2578-9680
dc.contributor.orcidhttps://orcid.org/0000-0002-5304-7510
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2023-09-11T06:11:19Z
dc.date.accessioned2025-05-28T07:28:40Z
dc.date.available2023-09-11T06:11:19Z
dc.date.issued2023
dc.description.abstractThis study assessed the prediction accuracy of the forest aboveground biomass (AGB) model using remotely sensed data sources (i.e. airborne laser scanning (ALS), RapidEye, Landsat), and the combination of ALS with RapidEye/Landsat using parametric weighted least squares (WLS) regression. We also analysed the AGB model using random forests, extremely randomized trees, and deep learning stacked autoencoder (SAE) network from nonparametric statistics to compare the performance with WLS regression. We also compared the widths of the 95% confidence intervals for estimates of the mean AGB per unit area using the model-based estimator. The study site in the Terai Arc Landscape, Nepal, comprised 14 protected areas extending from the southern part of Nepal to India and encompassed mosaics of continuous dense forest and tall grassland. The ALS data provided the largest prediction accuracy (0.30–0.35 relative root mean squared error (rRMSE)), whereas RapidEye and Landsat had smaller prediction accuracies (0.48‒0.54 and 0.47‒0.55 rRMSE, respectively) for the estimation of AGB. The combined use of ALS and RapidEye predictors in the AGB model reduced the rRMSE and narrowed the confidence interval compared with ALS alone, but the improvements were minor. The SAE prediction technique provided the largest prediction accuracy, with inputs of combined ALS and RapidEye predictors that yielded an R2 of 0.80, an rRMSE of 0.30, and a confidence interval of 176‒184 compared to other tested prediction techniques. The SAE prediction technique can become more powerful than other tested prediction techniques if properly adjusted and tuned for accurate forest AGB mapping applications. To our knowledge, this is the first study assessing the performance of the SAE in AGB modelling with a range of hyper-parameter values.
dc.description.vuosik2023
dc.format.bitstreamtrue
dc.format.pagerange5147-5171
dc.identifier.olddbid496386
dc.identifier.oldhandle10024/553822
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/12679
dc.identifier.urnURN:NBN:fi-fe20230911122163
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherInforma UK Limited
dc.relation.doi10.1080/01431161.2023.2240508
dc.relation.ispartofseriesInternational Journal of Remote Sensing
dc.relation.issn0143-1161
dc.relation.issn1366-5901
dc.relation.numberinseries17
dc.relation.volume44
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/553822
dc.subjectAboveground biomass
dc.subjectRapidEye
dc.subjectLandsat
dc.subjecthyper- parameter
dc.subjectdeep learning
dc.subjectrandom forests
dc.tehOHFO-Alku-2
dc.titleEstimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Rana-P_et_al_2023.pdf
Size:
8.33 MB
Format:
Adobe Portable Document Format
Description:
Rana-P_et_al_2023.pdf

Kokoelmat