Luke
 

Using multitemporal hyper- and multispectral UAV imaging for detecting bark beetle infestation on Norway spruce

dc.contributor.authorHonkavaara, E.
dc.contributor.authorNäsi, R.
dc.contributor.authorOliveira, R.
dc.contributor.authorViljanen, N.
dc.contributor.authorSuomalainen, J.
dc.contributor.authorKhoramshahi, E.
dc.contributor.authorHakala, T.
dc.contributor.authorNevalainen, O.
dc.contributor.authorMarkelin, L.
dc.contributor.authorVuorinen, M.
dc.contributor.authorKankaanhuhta, V.
dc.contributor.authorLyytikäinen-Saarenmaa, P.
dc.contributor.authorHaataja, L.
dc.contributor.departmentid4100110310
dc.contributor.departmentid4100110710
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2020-12-02T11:58:20Z
dc.date.accessioned2025-05-28T13:04:43Z
dc.date.available2020-12-02T11:58:20Z
dc.date.issued2020
dc.description.abstractVarious biotic and abiotic stresses are threatening forests. Modern remote sensing technologies provide powerful means for monitoring forest health, and provide a sustainable basis for forest management and protection. The objective of this study was to develop unmanned aerial vehicle (UAV) based spectral remote sensing technologies for tree health assessment, particularly, for detecting the European spruce bark beetle (Ips typographus L.) attacks. Our focus was to study the early detection of bark beetle attack, i.e. the “green attack” phase. This is a difficult remote sensing task as there does not exist distinct symptoms that can be observed by the human eye. A test site in a Norway spruce (Picea abies (L.) Karst.) dominated forest was established in Southern-Finland in summer 2019. It had an emergent bark beetle outbreak and it was also suffering from other stress factors, especially the root and butt rot (Heterobasidion annosum (Fr.) Bref. s. lato). Altogether seven multitemporal hyper- and multispectral UAV remote sensing datasets were captured from the area in August to October 2019. Firstly, we explored deterioration of tree health and development of spectral symptoms using a time series of UAV hyperspectral imagery. Secondly, we trained assessed a machine learning model for classification of spruce health into classes of “bark beetle green attack”, “root-rot”, and “healthy”. Finally, we demonstrated the use of the model in tree health mapping in a test area. Our preliminary results were promising and indicated that the green attack phase could be detected using the accurately calibrated spectral image data.
dc.description.vuosik2020
dc.format.bitstreamtrue
dc.format.pagerange429-434
dc.identifier.olddbid489120
dc.identifier.oldhandle10024/546580
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/23292
dc.identifier.urnURN:NBN:fi-fe2020120299127
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherISPRS Council.
dc.relation.conferenceXXIV ISPRS Congress
dc.relation.doi10.5194/isprs-archives-xliii-b3-2020-429-2020
dc.relation.ispartofThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020.
dc.relation.ispartofseriesInternational archives of the photogrammetry, remote sensing and spatial information sciences
dc.relation.issn1682-1750
dc.relation.issn2194-9034
dc.relation.volumeXLIII-B3-2020
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/546580
dc.subject.ysoHyperspectral
dc.subject.ysoRemote Sensing
dc.subject.ysoRadiometric calibration
dc.subject.ysoForest disturbance
dc.subject.ysoInsect pest
dc.subject.ysoMachine learning
dc.subject.ysoPicea abies
dc.teh41005-00032100
dc.titleUsing multitemporal hyper- and multispectral UAV imaging for detecting bark beetle infestation on Norway spruce
dc.typepublication
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|sv=A4 Artikel i en konferenspublikation|en=A4 Conference proceedings|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Honkavaara_et_al_2020.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Description:
Honkavaara_et_al_2020.pdf

Kokoelmat