Luke
 

Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions

dc.contributor.authorArslan, Ali Nadir
dc.contributor.authorTanis, Cemal Melih
dc.contributor.authorMetsämäki, Sari
dc.contributor.authorAurala, Mika
dc.contributor.authorBottcher, Kristin
dc.contributor.authorLinkosalmi, Maiju
dc.contributor.authorPeltoniemi, Mikko
dc.contributor.departmentLuke / Luonnonvarat ja biotuotanto / Ympäristövaikutukset / Ilmastonmuutoksen hillintä ja sopeutuminen (4100100411)-
dc.contributor.departmentid4100100411-
dc.contributor.otherFinnish Meteorological Institute-
dc.contributor.otherFinnish Environmental Institute SYKE-
dc.date.accessioned2017-11-10T14:24:10Z
dc.date.accessioned2025-05-27T16:26:46Z
dc.date.available2017-11-10T14:24:10Z
dc.date.issued2017
dc.description.abstractFractional snow cover (FSC) is an important parameter to estimate snow water equivalent (SWE) and surface albedo important to climatic and hydrological applications. The presence of forest creates challenges to retrieve FSC accurately from satellite data, as forest canopy can block the sensor’s view of snow cover. In addition to the challenge related to presence of forest, in situ data of FSC—necessary for algorithm development and validation—are very limited. This paper investigates the estimation of FSC using digital imagery to overcome the obstacle caused by forest canopy, and the possibility to use this imagery in the validation of FSC derived from satellite data. FSC is calculated here using an algorithm based on defining a threshold value according to the histogram of an image, to classify a pixel as snow-covered or snow-free. Images from the MONIMET camera network, producing a continuous image series in Finland, are used in the analysis of FSC. The results obtained from automated image analysis of snow cover are compared with reference data estimated by visual inspection of same images. The results show the applicability and usefulness of digital imagery in the estimation of fractional snow cover in forested areas, with a Root Mean Squared Error (RMSE) in the range of 0.1–0.3 (with the full range of 0–1).-
dc.description.vuosik2017-
dc.formatVerkkojulkaisu-
dc.format.bitstreamfalse
dc.identifier.olddbid483003
dc.identifier.oldhandle10024/540840
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/203
dc.language.isoeng-
dc.okm.corporatecopublicationei-
dc.okm.discipline1171 Geotieteet-
dc.okm.discipline213 Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka-
dc.okm.internationalcopublicationei-
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu-
dc.okm.selfarchivedei-
dc.publisherMDPI-
dc.relation.doidoi:10.3390/geosciences7030055-
dc.relation.ispartofseriesGeosciences-
dc.relation.issn2076-3263-
dc.relation.numberinseries3-
dc.relation.volume7-
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/540840
dc.subject.agriforskuvankäsittely-
dc.subject.agriforsboreaaliset metsät-
dc.subject.agrovocimage processing-
dc.subject.agrovocweb cameras-
dc.subject.agrovocsnow cover-
dc.subject.agrovocboreal forests-
dc.subject.keyworddigital images-
dc.subject.ysawebkamerat-
dc.subject.ysalumipeite-
dc.titleAutomated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|-

Tiedostot

Kokoelmat