Luke
 

Vehicle modeling and state estimation for autonomous driving in terrain

dc.contributor.authorBadar, Tabish
dc.contributor.authorBackman, Juha
dc.contributor.authorVisala, Arto
dc.contributor.departmentid4100210710
dc.contributor.orcidhttps://orcid.org/0000-0003-2010-4010
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-09-24T12:56:22Z
dc.date.accessioned2025-05-28T08:11:49Z
dc.date.available2024-09-24T12:56:22Z
dc.date.issued2024
dc.description.abstractThe automobile industry usually ignores the height of the path and uses planar vehicle models to implement automatic vehicle control. In addition, existing literature mostly concerns level terrain or homogeneous road surfaces for estimating vehicle dynamics. However, ground vehicles utilized in forestry, such as forwarders, operate on uneven terrain. The vehicle models built on level terrain assumptions are inadequate to capture the rolling or pitching dynamics of such machines as rollover of such vehicles is a potential risk. Therefore, knowledge about the height profile of the path is crucial for automating such off-road operations and avoiding rollover. We propose the use of a six-degrees-of-freedom (6-DOF) dynamic vehicle model to solve the autonomous forwarder problem. An adaptive linear tire model is used in the 6-DOF model assuming the vehicle operates in a primary handling regime. The force models are modified to include the three-dimensional (3D) map information. The calibration procedures, identifying actuator dynamics, and quantifying sensor delays are also represented. The proposed vehicle modeling contributed to realizing the continuous-discrete extended Kalman filter (CDEKF), which takes into account the 3D path during filtering and fixed-lag smoothing. Polaris (an all-terrain electric car) is used as a case study to experimentally validate the vehicle modeling and performance of the state estimator. Three types of grounds are selected — an asphalt track, a concrete track with a high elevation gradient, and a gravel track inside a forest. Stable state estimates are obtained using CDEKF and sparse 3D maps of terrains despite discontinuities in satellite navigation data inside the forest. The height estimation results are obtained with sufficient accuracy when compared to ground truth obtained by aerial 3D mapping. Finally, the proposed model’s applicability for predictive control is demonstrated by utilizing the state estimates to predict future states considering (3D) terrain.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange16 p.
dc.identifier.citationHow to cite: Badar, T., Backman, J., & Visala, A. (2024). Vehicle modeling and state estimation for autonomous driving in terrain. Control Engineering Practice, 152, 106046. https://doi.org/10.1016/j.conengprac.2024.106046
dc.identifier.olddbid497817
dc.identifier.oldhandle10024/555246
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/13822
dc.identifier.urlhttps://doi.org/10.1016/j.conengprac.2024.106046
dc.identifier.urnURN:NBN:fi-fe2024092474627
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline213
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherPergamon Press
dc.relation.articlenumber106046
dc.relation.doi10.1016/j.conengprac.2024.106046
dc.relation.ispartofseriesControl engineering practice
dc.relation.issn0967-0661
dc.relation.issn1873-6939
dc.relation.volume152
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555246
dc.subjectautonomous ground vehicles
dc.subjectmodeling
dc.subjectsimulation and experimental model validation
dc.subjectobserver design and state estimation
dc.subject3D elevation models
dc.subjectforest machines
dc.tehOHFO-Alku-2
dc.titleVehicle modeling and state estimation for autonomous driving in terrain
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Badar_etal_2024_ContrEngPract_Vehicle_modeling_and_state.pdf
Size:
6.77 MB
Format:
Adobe Portable Document Format
Description:
Badar_etal_2024_ContrEngPract_Vehicle_modeling_and_state.pdf

Kokoelmat