Luke
 

Estimation of individual animal SNP-BLUP reliability using full Monte Carlo sampling

dc.contributor.authorBen Zaabza, H.
dc.contributor.authorMäntysaari, E.A.
dc.contributor.authorStrandén, I.
dc.contributor.departmentid4100210310
dc.contributor.departmentid4100210310
dc.contributor.departmentid4100111010
dc.contributor.orcidhttps://orcid.org/0000-0003-0044-8473
dc.contributor.orcidhttps://orcid.org/0000-0003-0161-2618
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2021-05-20T07:38:21Z
dc.date.accessioned2025-05-27T20:25:22Z
dc.date.available2021-05-20T07:38:21Z
dc.date.issued2021
dc.description.abstractCalculation of individual animal reliability of estimated genomic breeding value by SNP-BLUP requires inversion of the mixed model equations (MME). When the SNP-BLUP model includes a residual polygenic (RPG) effect, the size of the MME will be at least the number of genotyped animals (n) plus the number of SNP markers (m). Inversion of the MME in SNP-BLUP involves computations proportional to the cube of the MME size; that is, (n + m)3, which can present a considerable computational burden. We introduce a full Monte Carlo (MC) sampling-based method for approximating reliability in the SNP-BLUP model and compare its performance to the genomic BLUP (GBLUP) model. The performance of the full MC approach was evaluated using 2 data sets, including 19,757 and 222,619 genotyped animals selected from populations with 231,186 and 13.35 million pedigree animals, respectively. Genotypes were available in the data sets for 11,729 and 50,240 SNP markers. An advantage of the full MC approximation method was its low computational demand. A drawback was its tendency to overestimate reliability for animals with low reliability, especially when the weight of the RPG effect was high. The overestimation can be lessened by increasing the number of MC samples.
dc.description.vuosik2021
dc.format.bitstreamtrue
dc.format.pagerange137-141
dc.identifier.olddbid490069
dc.identifier.oldhandle10024/547524
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/10027
dc.identifier.urnURN:NBN:fi-fe2021052030869
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline412
dc.okm.internationalcopublicationei
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherAmerican Dairy Science Association
dc.relation.doi10.3168/jdsc.2020-0058
dc.relation.ispartofseriesJDS Communications
dc.relation.issn2666-9102
dc.relation.numberinseries3
dc.relation.volume2
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/547524
dc.subject.ysogenomics
dc.subject.ysodairy cattle
dc.subject.ysoMonte Carlo methods
dc.teh41007-00014600
dc.titleEstimation of individual animal SNP-BLUP reliability using full Monte Carlo sampling
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Ben_Zaabza_et_al_2021.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Ben_Zaabza_et_al_2021.pdf

Kokoelmat