Luke
 

Bayesian species recognition and abundance estimation: unravelling the mysteries of salmonid migration in the Teno River

dc.contributor.authorRäty, Antti
dc.contributor.authorPulkkinen, Henni
dc.contributor.authorErkinaro, Jaakko
dc.contributor.authorOrell, Panu
dc.contributor.authorFalkegård, Morten
dc.contributor.authorMäntyniemi, Samu
dc.contributor.departmentid4100111210
dc.contributor.departmentid4100111210
dc.contributor.departmentid4100111210
dc.contributor.departmentid4100111210
dc.contributor.departmentid4100110810
dc.contributor.orcidhttps://orcid.org/0009-0004-2277-0353
dc.contributor.orcidhttps://orcid.org/0000-0002-0926-0285
dc.contributor.orcidhttps://orcid.org/0000-0002-7843-0364
dc.contributor.orcidhttps://orcid.org/0000-0003-4294-5048
dc.contributor.orcidhttps://orcid.org/0000-0002-3367-6280
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-09-16T08:26:48Z
dc.date.issued2025
dc.description.abstractIn Teno River, annual sonar monitoring is used to estimate the abundance of three salmonid species: Atlantic salmon, pink salmon, and sea trout. However, the size distribution of these species is partially overlapping making species recognition impossible from plain sonar data. A Bayesian model was developed to tackle this problem and to estimate abundance and migration timing for these three species. The model integrates multiple sources of data including catch, video count, daily average school sizes, and expert knowledge. Given the limited catch and video statistics for 2021, the use of school size data and expert knowledge on migration intensity enhanced the estimation when other data sources were unavailable. The model estimated a median of 11.8 thousand Atlantic salmon, 6.6 thousand sea trout, and 52.0 thousand pink salmon migrating into the river during 2021. These findings offer a more accurate representation of species distribution, support future conservation and management efforts, and provide a modelling-based solution for distinguishing similarly sized species from sonar counting data.
dc.format.pagerange16 p.
dc.identifier.citationHow to cite: Bayesian species recognition and abundance estimation: unravelling the mysteries of salmonid migration in the Teno River Antti Räty, Henni Pulkkinen, Jaakko Erkinaro, Panu Orell, Morten Falkegård, and Samu Mäntyniemi Canadian Journal of Fisheries and Aquatic Sciences 2025 82:, 1-16
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99911
dc.identifier.urlhttps://doi.org/10.1139/cjfas-2024-0309
dc.identifier.urnURN:NBN:fi-fe2025091696369
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline111
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherNational Research Council Canada
dc.relation.doi10.1139/cjfas-2024-0309
dc.relation.ispartofseriesCanadian journal of fisheries and aquatic sciences
dc.relation.issn0706-652X
dc.relation.issn1205-7533
dc.relation.volume82
dc.rightsCC BY 4.0
dc.source.justusid125342
dc.subjectAtlantic salmon
dc.subjectpink salmon
dc.subjectsonar monitoring
dc.subjectBayesian modelling
dc.subjectTeno river
dc.teh41001-00029400
dc.teh41007-00259701
dc.titleBayesian species recognition and abundance estimation: unravelling the mysteries of salmonid migration in the Teno River
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
bayesian-species-recognition-and-abundance-estimation-unravelling-the-mysteries-of-salmonid-migration-in-the-teno-river.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
bayesian-species-recognition-and-abundance-estimation-unravelling-the-mysteries-of-salmonid-migration-in-the-teno-river.pdf

Kokoelmat