Luke
 

Inferring ecological selection from multidimensional community trait distributions along environmental gradients

dc.contributor.authorKaarlejärvi, Elina
dc.contributor.authorItter, Malcolm
dc.contributor.authorTonteri, Tiina
dc.contributor.authorHamberg, Leena
dc.contributor.authorSalemaa, Maija
dc.contributor.authorMerilä, Päivi
dc.contributor.authorVanhatalo, Jarno
dc.contributor.authorLaine, Anna‐Liisa
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0001-8783-3213
dc.contributor.orcidhttps://orcid.org/0000-0002-0009-7768
dc.contributor.orcidhttps://orcid.org/0000-0002-4436-6413
dc.contributor.orcidhttps://orcid.org/0000-0002-1315-6130
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-08-13T05:52:56Z
dc.date.accessioned2025-05-28T11:37:29Z
dc.date.available2024-08-13T05:52:56Z
dc.date.issued2024
dc.description.abstractUnderstanding the drivers of community assembly is critical for predicting the future of biodiversity and ecosystem services. Ecological selection ubiquitously shapes communities by selecting for individuals with the most suitable trait combinations. Detecting selection types on key traits across environmental gradients and over time has the potential to reveal the underlying abiotic and biotic drivers of community dynamics. Here, we present a model-based predictive framework to quantify the multidimensional trait distributions of communities (community trait spaces), which we use to identify ecological selection types shaping communities along environmental gradients. We apply the framework to over 3600 boreal forest understory plant communities with results indicating that directional, stabilizing, and divergent selection all modify community trait distributions and that the selection type acting on individual traits may change over time. Our results provide novel and rare empirical evidence for divergent selection within a natural system. Our approach provides a framework for identifying key traits under selection and facilitates the detection of processes underlying community dynamics.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange17 p.
dc.identifier.citationHow to cite: Kaarlejärvi, Elina, Malcolm Itter, Tiina Tonteri, Leena Hamberg, Maija Salemaa, Päivi Merilä, Jarno Vanhatalo, and Anna-Liisa Laine. 2024. “ Inferring Ecological Selection from Multidimensional Community Trait Distributions along Environmental Gradients.” Ecology e4378. https://doi.org/10.1002/ecy.4378
dc.identifier.olddbid497711
dc.identifier.oldhandle10024/555140
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/22174
dc.identifier.urlhttp://dx.doi.org/10.1002/ecy.4378
dc.identifier.urnURN:NBN:fi-fe2024081264484
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.discipline1181
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherJohn Wiley & Sons
dc.relation.articlenumbere4378
dc.relation.doi10.1002/ecy.4378
dc.relation.ispartofseriesEcology
dc.relation.issn0012-9658
dc.relation.issn1939-9170
dc.relation.numberinseries9
dc.relation.volume105
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555140
dc.subjectcommunity assembly
dc.subjectdisruptive selection
dc.subjectdivergent selection
dc.subjectdiversity
dc.subjectecological selection
dc.subjectfunctional trait
dc.subjecthypervolume
dc.subjectstabilizing selection
dc.teh41007-00182500
dc.titleInferring ecological selection from multidimensional community trait distributions along environmental gradients
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kaarlejarvi_et_al._2024_(Ecology).pdf
Size:
10.38 MB
Format:
Adobe Portable Document Format
Description:
Kaarlejarvi_et_al._2024_(Ecology).pdf

Kokoelmat