Luke
 

Advancing Soil Organic Carbon Prediction : A Comprehensive Review of Technologies, AI, Process‐Based and Hybrid Modelling Approaches

dc.contributor.authorDing, Zijuan
dc.contributor.authorLiu, Ke
dc.contributor.authorGrunwald, Sabine
dc.contributor.authorSmith, Pete
dc.contributor.authorCiais, Philippe
dc.contributor.authorWang, Bin
dc.contributor.authorWadoux, Alexandre M.J.‐C.
dc.contributor.authorFerreira, Carla
dc.contributor.authorKarunaratne, Senani
dc.contributor.authorShurpali, Narasinha
dc.contributor.authorYin, Xiaogang
dc.contributor.authorRoberts, Dale
dc.contributor.authorMadgett, Oli
dc.contributor.authorDuncan, Sam
dc.contributor.authorZhou, Meixue
dc.contributor.authorLiu, Zhangyong
dc.contributor.authorHarrison, Matthew Tom
dc.contributor.departmentid4100211410
dc.contributor.orcidhttps://orcid.org/0000-0003-1052-4396
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-09-30T05:57:42Z
dc.date.issued2025
dc.description.abstractMeasurement, monitoring, and prediction of soil organic carbon (SOC) are fundamental to supporting climate change mitigation efforts and promoting sustainable agricultural management practices. This review discusses recent advances in methodologies and technologies for SOC quantification, including remote sensing (RS), proximal soil sensing (PSS), artificial intelligence (AI) for SOC modelling (in particular, machine learning (ML) and deep learning (DL)), biogeochemical modelling, and data fusion. Integrating data from RS, PSS, and other sensors usually leads to good SOC predictions, provided it is supported by careful calibration, validation across diverse pedo-climatic and land management, and the use of data processing and modelling frameworks. We also found that the accuracy of AI-driven SOC prediction improves when RS covariates are included. Although DL often outperforms classical ML, there is no single best AI algorithm. By incorporating simulated outputs from biogeochemical model as additional training data for AI, causal relationships in SOC turnover can be incorporated into empirical modelling, while maintaining predictive accuracy. In conclusion, SOC prediction can be enhanced through 1) integrating sensing technologies, 2) applying AI, notably DL, 3) addressing biogeochemical model limitations (assumptions, parameterization, structure), 4) expanding SOC data availability, 5) improving mathematical representation of microbial influences on SOC, and 6) strengthening interdisciplinary cooperation between soil scientists and model developers.
dc.format.pagerange28 p.
dc.identifier.citationHow to cite: Z. Ding, K. Liu, S. Grunwald, et al. “ Advancing Soil Organic Carbon Prediction: A Comprehensive Review of Technologies, AI, Process-Based and Hybrid Modelling Approaches.” Adv. Sci. 12, no. 31 (2025): 12, e04152. https://doi.org/10.1002/advs.202504152
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103063
dc.identifier.urlhttp://dx.doi.org/10.1002/advs.202504152
dc.identifier.urnURN:NBN:fi-fe2025093098854
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1171
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherWiley-VCH
dc.relation.articlenumbere04152
dc.relation.doi10.1002/advs.202504152
dc.relation.ispartofseriesAdvanced science
dc.relation.issn2198-3844
dc.relation.numberinseries31
dc.relation.volume12
dc.rightsCC BY 4.0
dc.source.justusid125883
dc.subjectbiogeochemical model
dc.subjectdata-fusion
dc.subjectdeep learning
dc.subjecthybrid approaches
dc.subjectmachine learning
dc.subjectremote sensing
dc.subjectsoil carbon prediction
dc.teh41007-00249501
dc.teh41007-00322600
dc.titleAdvancing Soil Organic Carbon Prediction : A Comprehensive Review of Technologies, AI, Process‐Based and Hybrid Modelling Approaches
dc.typepublication
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|en=A2 Review article, Literature review, Systematic review|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Advanced_Science-2025-Ding-Advancing_Soil_Organic_Carbon_Prediction.pdf
Size:
8.61 MB
Format:
Adobe Portable Document Format
Description:
Advanced_Science-2025-Ding-Advancing_Soil_Organic_Carbon_Prediction.pdf

Kokoelmat