Luke
 

Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy

dc.contributor.authorZhang, Boyang
dc.contributor.authorLin, Shili
dc.contributor.authorMoraes, Luis
dc.contributor.authorFirkins, Jeffrey
dc.contributor.authorHristov, Alexander N.
dc.contributor.authorKebreab, Ermias
dc.contributor.authorJanssen, Peter H.
dc.contributor.authorBannink, André
dc.contributor.authorBayat, Alireza R.
dc.contributor.authorCrompton, Les A.
dc.contributor.authorDijkstra, Jan
dc.contributor.authorEugène, Maguy A.
dc.contributor.authorKreuzer, Michael
dc.contributor.authorMcGee, Mark
dc.contributor.authorReynolds, Christopher K.
dc.contributor.authorSchwarm, Angela
dc.contributor.authorYáñez-Ruiz, David R.
dc.contributor.authorYu, Zhongtang
dc.contributor.departmentid4100211510
dc.contributor.orcidhttps://orcid.org/0000-0002-4894-0662
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-20T07:00:08Z
dc.date.accessioned2025-05-28T11:10:17Z
dc.date.available2025-01-20T07:00:08Z
dc.date.issued2023
dc.description.abstractMethane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange11 p.
dc.identifier.citationHow to cite: Zhang, B., Lin, S., Moraes, L. et al. Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy. Sci Rep 13, 21305 (2023). https://doi.org/10.1038/s41598-023-48449-y
dc.identifier.olddbid498578
dc.identifier.oldhandle10024/556006
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/21714
dc.identifier.urlhttp://dx.doi.org/10.1038/s41598-023-48449-y
dc.identifier.urnURN:NBN:fi-fe202501204653
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline412
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Nature
dc.relation.articlenumber21305
dc.relation.doi10.1038/s41598-023-48449-y
dc.relation.ispartofseriesScientific reports
dc.relation.issn2045-2322
dc.relation.numberinseries1
dc.relation.volume13
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556006
dc.subjectmethane
dc.subjectemissions
dc.subjectruminants
dc.teh3200023800
dc.titleMethane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
s41598-023-48449-y.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
s41598-023-48449-y.pdf

Kokoelmat