Luke
 

Integrating microbial abundance time series with fermentation dynamics of the rumen microbiome via mathematical modelling

dc.contributor.authorDavoudkhani, Mohsen
dc.contributor.authorRubino, Francesco
dc.contributor.authorCreevey, Christopher J.
dc.contributor.authorAhvenjärvi, Seppo
dc.contributor.authorBayat, Ali R.
dc.contributor.authorTapio, Ilma
dc.contributor.authorBelanche, Alejandro
dc.contributor.authorMuñoz-Tamayo, Rafael
dc.contributor.departmentid4100211410
dc.contributor.departmentid4100211510
dc.contributor.departmentid4100210310
dc.contributor.orcidhttps://orcid.org/0000-0001-6977-0933
dc.contributor.orcidhttps://orcid.org/0000-0002-0752-9551
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-03-26T07:24:21Z
dc.date.accessioned2025-05-28T08:28:04Z
dc.date.available2024-03-26T07:24:21Z
dc.date.issued2024
dc.description.abstractThe rumen represents a dynamic microbial ecosystem where fermentation metabolites and microbial concentrations change over time in response to dietary changes. The integration of microbial genomic knowledge and dynamic modelling can enhance our system-level understanding of rumen ecosystem’s function. However, such an integration between dynamic models and rumen microbiota data is lacking. The objective of this work was to integrate rumen microbiota time series determined by 16S rRNA gene amplicon sequencing into a dynamic modelling framework to link microbial data to the dynamics of the volatile fatty acids (VFA) production during fermentation. For that, we used the theory of state observers to develop a model that estimates the dynamics of VFA from the data of microbial functional proxies associated with the specific production of each VFA. We determined the microbial proxies using CowPi to infer the functional potential of the rumen microbiota and extrapolate their functional modules from KEGG (Kyoto Encyclopedia of Genes and Genomes). The approach was challenged using data from an in vitro RUSITEC experiment and from an in vivo experiment with four cows. The model performance was evaluated by the coefficient of variation of the root mean square error (CRMSE). For the in vitro case study, the mean CVRMSE were 9.8% for acetate, 14% for butyrate and 14.5% for propionate. For the in vivo case study, the mean CVRMSE were 16.4% for acetate, 15.8% for butyrate and 19.8% for propionate. The mean CVRMSE for the VFA molar fractions were 3.1% for acetate, 3.8% for butyrate and 8.9% for propionate. Ours results show the promising application of state observers integrated with microbiota time series data for predicting rumen microbial metabolism.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange14 p.
dc.identifier.citationCitation: Davoudkhani M, Rubino F, Creevey CJ, Ahvenjärvi S, Bayat AR, Tapio I, et al. (2024) Integrating microbial abundance time series with fermentation dynamics of the rumen microbiome via mathematical modelling. PLoS ONE 19(3): e0298930. https://doi.org/10.1371/journal. pone.0298930
dc.identifier.olddbid497342
dc.identifier.oldhandle10024/554773
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14166
dc.identifier.urlhttp://dx.doi.org/10.1371/journal.pone.0298930
dc.identifier.urnURN:NBN:fi-fe2024032512880
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline412
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherPublic Library of Science (PLoS)
dc.relation.articlenumbere0298930
dc.relation.doi10.1371/journal.pone.0298930
dc.relation.ispartofseriesPLOS ONE
dc.relation.issn1932-6203
dc.relation.numberinseries3
dc.relation.volume19
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554773
dc.subjectmicrobial abundance
dc.subjecttime series
dc.subjectrumen
dc.subjectmathematical modeling
dc.teh41007-00154001
dc.titleIntegrating microbial abundance time series with fermentation dynamics of the rumen microbiome via mathematical modelling
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Davoudkhani_et_al_2024_journal.pone.0298930.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Davoudkhani_et_al_2024_journal.pone.0298930.pdf

Kokoelmat