Luke
 

Exploring the potential of forest snow modeling at the tree and snowpack layer scale

dc.contributor.authorMazzotti, Giulia
dc.contributor.authorNousu, Jari-Pekka
dc.contributor.authorVionnet, Vincent
dc.contributor.authorJonas, Tobias
dc.contributor.authorNheili, Rafife
dc.contributor.authorLafaysse, Matthieu
dc.contributor.departmentid4100311110
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-11-01T09:37:54Z
dc.date.accessioned2025-05-28T08:22:33Z
dc.date.available2024-11-01T09:37:54Z
dc.date.issued2024
dc.description.abstractBoreal and sub-alpine forests host seasonal snow for multiple months per year; however, snow regimes in these environments are rapidly changing due to rising temperatures and forest disturbances. Accurate prediction of forest snow dynamics, relevant for ecohydrology, biogeochemistry, cryosphere, and climate sciences, requires process-based models. While snow schemes that track the microstructure of individual snow layers have been proposed for avalanche research, so far, tree-scale processes resolving canopy representations only exist in a few snow-hydrological models. A framework that enables layer- and microstructure-resolving forest snow simulations at the meter scale is lacking to date. To fill this research gap, this study introduces the forest snow modeling framework FSMCRO, which combines two detailed, state-of-the art model components: the canopy representation from the Flexible Snow Model (FSM2) and the snowpack representation of the Crocus ensemble model system (ESCROC). We apply FSMCRO to discontinuous forests at boreal and sub-alpine sites to showcase how tree-scale forest snow processes affect layer-scale snowpack properties. Simulations at contrasting locations reveal marked differences in stratigraphy throughout the winter. These arise due to different prevailing processes at under-canopy versus gap locations and due to variability in snow metamorphism dictated by a spatially variable snowpack energy balance. Ensemble simulations allow us to assess the robustness and uncertainties of simulated stratigraphy. Spatially explicit simulations unravel the dependencies of snowpack properties on canopy structure at a previously unfeasible level of detail. Our findings thus demonstrate how hyper-resolution forest snow simulations can complement observational approaches to improve our understanding of forest snow dynamics, highlighting the potential of such models as research tools in interdisciplinary studies.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange4607-4632
dc.identifier.olddbid497949
dc.identifier.oldhandle10024/555377
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14040
dc.identifier.urlhttp://dx.doi.org/10.5194/tc-18-4607-2024
dc.identifier.urnURN:NBN:fi-fe2024110188535
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1171
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherCopernicus Publications
dc.relation.doi10.5194/tc-18-4607-2024
dc.relation.ispartofseriesCryosphere
dc.relation.issn1994-0416
dc.relation.issn1994-0424
dc.relation.numberinseries10
dc.relation.volume18
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555377
dc.subjectforests
dc.subjectsnow modeling
dc.subjectcanopy representation
dc.subjectsnowpack
dc.tehOHFO-Maa-ilma-3
dc.titleExploring the potential of forest snow modeling at the tree and snowpack layer scale
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Mazzotti_etal_2024_Cryosphere_Exploring_the_potential_of_forest_snow_modeling.pdf
Size:
11.92 MB
Format:
Adobe Portable Document Format
Description:
Mazzotti_etal_2024_Cryosphere_Exploring_the_potential_of_forest_snow_modeling.pdf

Kokoelmat