Luke
 

Sex identification in rainbow trout using genomic information and machine learning

dc.contributor.authorKudinov, Andrei A.
dc.contributor.authorKause, Antti
dc.contributor.departmentid4100210310
dc.contributor.departmentid4100210310
dc.contributor.orcidhttps://orcid.org/0000-0003-0259-6912
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-10T09:19:24Z
dc.date.accessioned2025-05-28T08:02:26Z
dc.date.available2025-01-10T09:19:24Z
dc.date.issued2024
dc.description.abstractSex identification in farmed fish is important for the management of fish stocks and breeding programs, but identification based on visual characteristics is typically difficult or impossible in juvenile or premature fish. The amount of genomic data obtained from farmed fish is rapidly growing with the implementation of genomic selection in aquaculture. In comparison to mammals and birds, ray-finned fishes exhibit a greater diversity of sex determination systems, with an absence of conserved genomic regions. A group of genomic markers located on a standard genotyping array has been reported to potentially be linked with sex determination in rainbow trout. However, the set of markers suitable for sex identification may vary between populations. Sex identification from genomic data is usually performed using probabilistic methods, where suitable markers are known beforehand. In our study, we demonstrated the use of the Extreme Gradient Boosting approach from the supervised machine learning gradient boost framework to predict sex from unimputed genomic data, when the suitability of the markers was unknown a priori. The accuracy of the method was assessed using four simulated datasets with different genotyping error rates and one real dataset from the Finnish Rainbow Trout Breeding Program. The method showed high prediction quality on both simulated and real datasets. For simulated datasets with low (5%) and high (50%) genotyping error rates, the accuracies were 1.0 and 0.60, respectively. In the real data, the method achieved a prediction accuracy of 98%, which is suitable for routine use.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange8 p.
dc.identifier.citationHow to cite: Kudinov, A.A., Kause, A. Sex identification in rainbow trout using genomic information and machine learning. Genet Sel Evol 56, 79 (2024). https://doi.org/10.1186/s12711-024-00944-0
dc.identifier.olddbid498512
dc.identifier.oldhandle10024/555940
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/13633
dc.identifier.urlhttps://doi.org/10.1186/s12711-024-00944-0
dc.identifier.urnURN:NBN:fi-fe202501102371
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1184
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherBioMed Central
dc.relation.articlenumber79
dc.relation.doi10.1186/s12711-024-00944-0
dc.relation.ispartofseriesGenetics selection evolution
dc.relation.issn0999-193X
dc.relation.issn1297-9686
dc.relation.numberinseries1
dc.relation.volume56
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555940
dc.subjectsex identification
dc.subjectgenomic data
dc.subjectmachine learning
dc.subjectrainbow trout
dc.subjectgenotyping error rates
dc.teh41007-00277901
dc.teh41007-00029400
dc.titleSex identification in rainbow trout using genomic information and machine learning
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kudinov_Kause_2024_GenSelEvol_Sex_identification.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
Kudinov_Kause_2024_GenSelEvol_Sex_identification.pdf

Kokoelmat