Luke
 

Automatized Sentinel-2 mosaicking for large area forest mapping

dc.contributor.authorPitkänen, Timo P.
dc.contributor.authorBalazs, Andras
dc.contributor.authorTuominen, Sakari
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0001-5389-8713
dc.contributor.orcidhttps://orcid.org/0000-0003-0693-7665
dc.contributor.orcidhttps://orcid.org/0000-0001-5429-3433
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-02-05T06:56:28Z
dc.date.accessioned2025-05-28T11:21:57Z
dc.date.available2024-02-05T06:56:28Z
dc.date.issued2024
dc.description.abstractCreating maps of forest inventory variables is commonly taking advantage of satellite images, which are mosaicked together for gaining larger coverage. Recently, mosaicking has increasingly shifted towards user friendly cloud-based online environments such as Google Earth Engine (GEE), which are equipped with huge image repositories and extensive processing capabilities. This enables the easy transferability of workflows into new image sets and diversifies the range of methodological options for mosaicking. The quality control of the output mosaic, ensuring that the reflectance values are representative to the targeted land cover, is however primarily based on certain assumptions or pre-set rules which may not always produce an optimal result. Our study focuses on assessing and comparing the performance of three different mosaicking algorithms for predicting forest inventory variables, based on an extensive set of field data on the main site type, fertility class, and volume and biomass of growing stock. One of the compared mosaics derives from manual image selection, thus enabling rigorous visual quality control, and two others are resting on GEE-assisted automatized methods which include applying a percentile-based statistic over all the input reflectance values and selecting the best pixels using predefined quality indicators. The results indicate that the manual and the percentile-based mosaics are generally providing the best and relatively equal performance levels. Compared to them, the quality-based mosaic has slightly lower accuracy particularly when predicting continuous variables (i.e., the volume and biomass of growing stock) and it suffers from minor image defects. For the total volume of growing stock, for example, the RMS errors are 56.22 % for the manual, 56.33 % for the percentile-based, and 59.47 % for the quality-based mosaics, respectively. These results indicate that from the perspective of large area forest mapping, automatically generated mosaics may provide approximately similar accuracy as compared to manually controlled workflow at a fraction of the workload.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange10 p.
dc.identifier.olddbid497195
dc.identifier.oldhandle10024/554629
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/21862
dc.identifier.urlhttp://dx.doi.org/10.1016/j.jag.2024.103659
dc.identifier.urnURN:NBN:fi-fe202402055650
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu2048.5
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2024
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber103659
dc.relation.doi10.1016/j.jag.2024.103659
dc.relation.ispartofseriesInternational journal of applied earth observation and geoinformation
dc.relation.issn1569-8432
dc.relation.issn1872-826X
dc.relation.volume127
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554629
dc.subjectsatellite images
dc.subjectforest research
dc.subjectSentinel-2
dc.subjectImage mosaicking
dc.teh41007-00204001
dc.teh41007-00256601
dc.teh41007-00197702
dc.titleAutomatized Sentinel-2 mosaicking for large area forest mapping
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Pitkanen_et_al_2024.pdf
Size:
9.97 MB
Format:
Adobe Portable Document Format
Description:
Pitkanen_et_al_2024.pdf

Kokoelmat