Luke
 

Comparing multispectral and hyperspectral UAV data for detecting peatland vegetation patterns

dc.contributor.authorPang, Yuwen
dc.contributor.authorRäsänen, Aleksi
dc.contributor.authorWolff, Franziska
dc.contributor.authorTahvanainen, Teemu
dc.contributor.authorMännikkö, Milja
dc.contributor.authorAurela, Mika
dc.contributor.authorKorpelainen, Pasi
dc.contributor.authorKumpula, Timo
dc.contributor.authorVirtanen, Tarmo
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0002-3629-1837
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-08-01T08:51:09Z
dc.date.accessioned2025-05-28T11:28:39Z
dc.date.available2024-08-01T08:51:09Z
dc.date.issued2024
dc.description.abstractNorthern peatland vegetation exhibits fine-scale spatial and spectral heterogeneity that can potentially be captured with uncrewed aerial vehicle (UAV) data due to their ultra-high spatial resolution (<10 cm). From this perspective, the contribution of different spectral sensors in mapping various vegetation characteristics has not been thoroughly investigated. We delineated spatial patterns of plant community clusters, plant functional types (PFTs), and selected plant species with UAV hyperspectral (HS), UAV multispectral (MS), and airborne LiDAR (light detection and ranging) topography (TP) data in two northern peatlands. We conducted random forest (RF) regressions in a geographic object-based image analysis (GEOBIA) framework and compared the relative contributions of the different datasets. In the best regression models, the percentage of explained variance was 24–74 % (RMSE:0.24–0.31), 40–90 % (RMSE:0.12–0.41), and 18–90 % (RMSE:0.03–0.40) for plant community clusters, PFTs, and plant species, respectively. The MS-TP combination had, in many cases, the highest performance, while HS-based models had better performance for some plant community clusters, PFTs, and plant species. TP features were useful only in certain situations. Overall, our results suggest that UAV MS imagery combined with TP data outperformed or performed at least almost as well as the models using UAV HS data and while all data combinations are capable for fine-scale detection of vegetation in northern peatlands. A more comprehensive investigations of data processing and methodology selection is needed to conclude if there is an added value of UAV HS data for peatland vegetation monitoring.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange12 p.
dc.identifier.citationHow to cite: Yuwen Pang, Aleksi Räsänen, Franziska Wolff, Teemu Tahvanainen, Milja Männikkö, Mika Aurela, Pasi Korpelainen, Timo Kumpula, Tarmo Virtanen, Comparing multispectral and hyperspectral UAV data for detecting peatland vegetation patterns, International Journal of Applied Earth Observation and Geoinformation, Volume 132, 2024,104043, ISSN 1569-8432, https://doi.org/10.1016/j.jag.2024.104043
dc.identifier.olddbid497686
dc.identifier.oldhandle10024/555115
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/22006
dc.identifier.urlhttps://doi.org/10.1016/j.jag.2024.104043
dc.identifier.urnURN:NBN:fi-fe2024080163213
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.discipline1171
dc.okm.discipline1181
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier BV
dc.relation.articlenumber104043
dc.relation.doi10.1016/j.jag.2024.104043
dc.relation.ispartofseriesInternational Journal of Applied Earth Observation and Geoinformation
dc.relation.issn1569-8432
dc.relation.volume132
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555115
dc.subjectpeatland vegetation mapping
dc.subjecthyperspectral remote sensing
dc.subjectgeographic object-based image analysis
dc.subjectrandom forest
dc.tehOHFO-Puskuri-2
dc.titleComparing multispectral and hyperspectral UAV data for detecting peatland vegetation patterns
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Pang_etal_2024_Comparing_multispectral_and_hyperspectral.pdf
Size:
12.57 MB
Format:
Adobe Portable Document Format
Description:
Pang_etal_2024_Comparing_multispectral_and_hyperspectral.pdf

Kokoelmat