Luke
 

Modelling machine-induced soil deformation in forest soils using stump proximity and machine learning

dc.contributor.authorGrube, Gunta
dc.contributor.authorGrigolato, Stefano
dc.contributor.authorAla-Ilomäki, Jari
dc.contributor.authorRouta, Johanna
dc.contributor.authorLindeman, Harri
dc.contributor.authorAstrup, Rasmus
dc.contributor.authorTalbot, Bruce
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.orcidhttps://orcid.org/0000-0001-7225-1798
dc.contributor.orcidhttps://orcid.org/0000-0001-5769-1066
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-08-28T14:09:21Z
dc.date.issued2025
dc.description.abstractSoil deformation is a key challenge in sustainable timber harvesting, particularly in environments with low bearing capacity. In mechanised forestry, this issue is especially pronounced in peatlands, where rutting arises from soil displacement and root shearing within the soft, organic substrate. While tree roots are known to reinforce soil, the specific role of stump-root systems in mitigating rut formation remains underexplored. This study examines the influence of stump presence on rut depth using Unmanned Aerial Vehicle (UAV) based digital terrain models (DTMs), manual field measurements, spatial modelling, and machine learning techniques. UAV-derived rut depth estimates were first compared with manual data, revealing slightly lower values in deeper ruts, particularly in curved trails, with mean discrepancies of 3 cm. Statistical analysis confirmed that cumulative stump influence significantly reduced rut depth, with a small to medium effect in straight trails (ɛ2 = 0.04–0.20) and a moderate to large effect in curved trails (ɛ2 = 0.02–0.32). Machine learning models achieved high predictive accuracy (R2 = 0.69–0.85), identifying stump-related variables and soil shear modulus as key predictors of rut formation. These findings emphasise the importance of incorporating stump-root reinforcement into forest planning to optimise machine path selection and minimise soil disturbance. Future research should refine species-specific reinforcement models and explore advanced root mapping techniques, such as ground-penetrating radar (GPR), to strengthen decision-support tools for sustainable forestry. Science4Impact statement (S4IS) This study presents a spatially informed methodology to evaluate the influence of tree stump-root systems on rut formation in peatland soils. By integrating UAV mapping and machine learning, this study enables the predictive identification of low-impact areas, reducing site disturbance and supporting climate-smart forestry. These findings offer a practical starting point and a potential tool for optimising skid trail layout, improving operational efficiency, and minimising soil disturbance and site damage. The approach supports evidence-based decision-making in peatland conservation, helping align forest operations with broader environmental and climate goals.
dc.format.pagerange17 p.
dc.identifier.citationHow to cite: Gunta Grube, Stefano Grigolato, Jari Ala-Ilomäki, Johanna Routa, Harri Lindeman, Rasmus Astrup, Bruce Talbot, Modelling machine-induced soil deformation in forest soils using stump proximity and machine learning, Biosystems Engineering, Volume 258, 2025, 104255, https://doi.org/10.1016/j.biosystemseng.2025.104255.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99870
dc.identifier.urlhttps://doi.org/10.1016/j.biosystemseng.2025.104255
dc.identifier.urnURN:NBN:fi-fe2025082893047
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherAcademic Press
dc.relation.articlenumber104255
dc.relation.doi10.1016/j.biosystemseng.2025.104255
dc.relation.ispartofseriesBiosystems engineering
dc.relation.issn1537-5110
dc.relation.issn1537-5129
dc.relation.volume258
dc.rightsCC BY 4.0
dc.source.justusid124606
dc.subjectroot reinforcement
dc.subjectsoil compaction
dc.subjectmachine traffic
dc.subjectUAV
dc.subjectmachine learning
dc.teh41007-00293001
dc.titleModelling machine-induced soil deformation in forest soils using stump proximity and machine learning
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Grube_etal_2025_BiosystEngin_Modelling_machine.pdf
Size:
5.12 MB
Format:
Adobe Portable Document Format
Description:
Grube_etal_2025_BiosystEngin_Modelling_machine.pdf

Kokoelmat