Luke
 

Soil organic matter, rather than temperature, determines the structure and functioning of subarctic decomposer communities

dc.contributor.authorRobinson, Sinikka I.
dc.contributor.authorO’Gorman, Eoin J.
dc.contributor.authorFrey, Beat
dc.contributor.authorHagner, Marleena
dc.contributor.authorMikola, Juha
dc.contributor.departmentid4100110610
dc.contributor.departmentid4100310610
dc.contributor.orcidhttps://orcid.org/0000-0003-3617-2712
dc.contributor.orcidhttps://orcid.org/0000-0002-4336-2648
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2022-05-03T07:22:24Z
dc.date.accessioned2025-05-27T18:45:31Z
dc.date.available2022-05-03T07:22:24Z
dc.date.issued2022
dc.description.abstractThe impacts of climate change on ecosystem structure and functioning are likely to be strongest at high latitudes due to the adaptation of biota to relatively low temperatures and nutrient levels. Soil warming is widely predicted to alter microbial, invertebrate, and plant communities, with cascading effects on ecosystem functioning, but this has largely been demonstrated over short-term (<10 year) warming studies. Using a natural soil temperature gradient spanning 10–35°C, we examine responses of soil organisms, decomposition, nitrogen cycling, and plant biomass production to long-term warming. We find that decomposer organisms are surprisingly resistant to chronic warming, with no responses of bacteria, fungi, or their grazers to temperature (fungivorous nematodes being an exception). Soil organic matter content instead drives spatial variation in microorganism abundances and mineral N availability. The few temperature effects that appear are more focused: root biomass and abundance of root-feeding nematodes decrease, and nitrification increases with increasing soil temperature. Our results suggest that transient responses of decomposers and soil functioning to warming may stabilize over time following acclimation and/or adaptation, highlighting the need for long-term, ecosystem-scale studies that incorporate evolutionary responses to soil warming.
dc.description.vuosik2022
dc.format.bitstreamtrue
dc.format.pagerange3929-3943
dc.identifier.olddbid494378
dc.identifier.oldhandle10024/551822
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/6443
dc.identifier.urnURN:NBN:fi-fe2023020625886
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline1181
dc.okm.internationalcopublicationon
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherWiley
dc.relation.doi10.1111/gcb.16158
dc.relation.ispartofseriesGlobal Change Biology
dc.relation.issn1354-1013
dc.relation.issn1365-2486
dc.relation.numberinseries12
dc.relation.volume28
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/551822
dc.subjectclimate change
dc.subjectdecomposition
dc.subjectsoil organic matter
dc.subjectecosystem functioning
dc.subjectstructural equation model
dc.subjectN mineralization
dc.subjectnatural experiment
dc.subjectplant biomass
dc.tehOHFO-Maa-ilma-2
dc.titleSoil organic matter, rather than temperature, determines the structure and functioning of subarctic decomposer communities
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Robinson_et_al_2022.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Robinson_et_al_2022.pdf

Kokoelmat