Luke
 

Atlantic salmon habitat-abundance modeling using machine learning methods

dc.contributor.authorJelovica, Bähar
dc.contributor.authorErkinaro, Jaakko
dc.contributor.authorOrell, Panu
dc.contributor.authorKløve, Bjørn
dc.contributor.authorTorabi Haghighi, Ali
dc.contributor.authorMarttila, Hannu
dc.contributor.departmentid4100111210
dc.contributor.departmentid4100111210
dc.contributor.orcidhttps://orcid.org/0000-0002-7843-0364
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-03-12T12:13:00Z
dc.date.accessioned2025-05-29T02:05:43Z
dc.date.available2024-03-12T12:13:00Z
dc.date.issued2024
dc.description.abstractClimate change and anthropogenic activities have impacts on fish habitat suitability, demanding more accurate modeling of species abundance for effective conservation and management. In this study, we applied Machine Learning techniques to model the habitat-abundance relationship of juvenile Atlantic salmon (Salmo salar) in the Teno catchment in Finland and Norway. To capture the complexity and nonlinearity of the habitat-abundance relationship, we employed Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting (GB), and Support Vector Classification (SVC) and compared their performances. Among the regression models considered, those incorporating input variables such as substrate, shade, and vegetation demonstrate higher performance. Support Vector Regression yields the highest mean cross-validation score (R2 = 0.58), and Gradient Boosting produces the highest test score (R2 = 0.6) among the regression techniques. The mean cross-validation and test scores obtained for the classification models are notably higher compared to the regression models across all scenarios. A comparison between regression and classification results highlights the challenges of accurately modeling the habitat-abundance relationship. This study provides insights into the challenges and potential of machine learning techniques for juvenile Atlantic salmon habitat-abundance modeling in complex riverine habitat environments. The findings emphasize the importance of considering the limitations of machine learning models, particularly in ecological contexts, and the need for further research to address temporal variations and improve the precision of habitat-abundance modeling.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange15 s.
dc.identifier.olddbid497306
dc.identifier.oldhandle10024/554739
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/52169
dc.identifier.urlhttp://dx.doi.org/10.1016/j.ecolind.2024.111832
dc.identifier.urnURN:NBN:fi-fe2024082366228
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1181
dc.okm.discipline113
dc.okm.discipline119
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber111832
dc.relation.doi10.1016/j.ecolind.2024.111832
dc.relation.ispartofseriesEcological indicators
dc.relation.issn1470-160X
dc.relation.issn1872-7034
dc.relation.volume160
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554739
dc.subjectAtlantic salmon abundance
dc.subjectMachine learning modeling
dc.subjectHabitat-abundance relationship
dc.subjectArctic
dc.teh41001-00004000
dc.titleAtlantic salmon habitat-abundance modeling using machine learning methods
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Jelovica_etal_2024_Atlantic_salmon_habitat-abundance.pdf
Size:
6.59 MB
Format:
Adobe Portable Document Format
Description:
Jelovica_etal_2024_Atlantic_salmon_habitat-abundance.pdf

Kokoelmat