Resin acid δ13C and δ18O as indicators of intra‐seasonal physiological and environmental variability
John Wiley & Sons
2024
Tang_etal_2024_PlantCellEnv_Resin_acid_13C_and_18O.pdf - Publisher's version - 2.82 MB
How to cite: Tang, Y., Sahlstedt, E., Rissanen, K.,
Bäck, J., Schiestl‐Aalto, P., Angove, C. et al. (2024) Resin acid δ13C and δ18O as indicators of intra‐seasonal physiological and environmental variability. Plant, Cell & Environment, 1–13.
https://doi.org/10.1111/pce.15108
Pysyvä osoite
Tiivistelmä
Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%–50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.
ISBN
OKM-julkaisutyyppi
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Julkaisusarja
Plant cell and environment
Volyymi
47
Numero
12
Sivut
Sivut
5411-5423
ISSN
0140-7791
1365-3040
1365-3040
