Luke
 

An Integrated GIS-MILP Framework for Cost-Optimal Forest Biomass-to-Bioenergy Supply Chains: A Case Study in Queensland, Australia

dc.contributor.authorVan Holsbeeck, Sam
dc.contributor.authorAcuna, Mauricio
dc.contributor.authorEzzati, Sättar
dc.contributor.departmentid4100210610
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-12-19T13:32:43Z
dc.date.issued2025
dc.description.abstractRenewable energy expansion requires cost-effective strategies to integrate underutilized biomass resources into energy systems. In Australia, forest residues represent a significant but largely untapped feedstock that could contribute to a more diversified energy portfolio. This study presents an integrated geospatial and optimization decision-support model designed to minimize the total cost of forest biomass-to-bioenergy supply chains through optimal facility selection and network design. The model combined geographic information systems with mixed-integer linear programming to identify the optimal candidate facility sites based on spatial constraints, biomass availability and infrastructure proximity. These inputs then informed an optimization framework that determined the number, size, and geographical distribution of bioenergy plants. The model was applied to a case study in Queensland, Australia, evaluating two strategic scenarios: (i) a biomass-driven approach that maximizes the use of forest residues; (ii) an energydriven approach that aligns facilities with regional energy consumption patterns. Results indicated that increasing the minimum facility size reduced overall costs by capitalizing on economies of scale. Biomass collection accounted for 81%–83% of total supply chain costs (excluding capital installation), emphasizing the need for logistically efficient sourcing strategies. Furthermore, the system exhibited high sensitivity to transportation distance and biomass availability; energy demands exceeding 400 MW resulted in sharply escalating transport expenses. This study provides a scalable, data-driven framework for the strategic planning of forest-based bioenergy systems. It offers actionable insights for policymakers and industry stakeholders to support the development of robust, cost-effective, and sustainable bioenergy supply chains in Australia and other regions with similar biomass resources.
dc.format.pagerange19 p.
dc.identifier.citationHow to cite: Van Holsbeeck, S.; Acuna, M.; Ezzati, S. An Integrated GIS–MILP Framework for Cost-Optimal Forest Biomass-to-Bioenergy Supply Chains: A Case Study in Queensland, Australia. Forests 2025, 16, 1467. https://doi.org/10.3390/f16091467
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103501
dc.identifier.urlhttps://doi.org/10.3390/f16091467
dc.identifier.urnURN:NBN:fi-fe20251219122905
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI
dc.relation.articlenumber1467
dc.relation.doi10.3390/f16091467
dc.relation.ispartofseriesForests
dc.relation.issn1999-4907
dc.relation.numberinseries9
dc.relation.volume16
dc.rightsCC BY 4.0
dc.source.justusid131847
dc.subjectforest biomass
dc.subjectbioenergy
dc.subjectfacility location optimization
dc.subjectbiomass supply chain
dc.subjectmixed-integer linear programming (MILP)
dc.titleAn Integrated GIS-MILP Framework for Cost-Optimal Forest Biomass-to-Bioenergy Supply Chains: A Case Study in Queensland, Australia
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Holsbeeck_etal_2025_Forests_An_integrated_GIS_MILP.pdf
Size:
3.91 MB
Format:
Adobe Portable Document Format
Description:
Holsbeeck_etal_2025_Forests_An_integrated_GIS_MILP.pdf

Kokoelmat