Luke
 

Mining global soil carbon datasets: can modern machine learning uncover the missing pieces of process-based models?

Hashimoto_2025_Environ._Res._Lett._20_101003.pdf
Hashimoto_2025_Environ._Res._Lett._20_101003.pdf - Publisher's version - 1.52 MB
How to cite: Shoji Hashimoto, Elisa Bruni, Boris Ťupek, Naoyuki Yamashita, Jumpei Toriyama, Taiki Mori, Akihiro Imaya, Bertrand Guenet, Akihiko Ito and Aleksi Lehtonen. Mining global soil carbon datasets: can modern machine learning uncover the missing pieces of process-based models? 2025 Environ. Res. Lett. 20 (10) 101003

Tiivistelmä

The future of terrestrial soil carbon stocks plays a crucial role in climate change prediction. Modern machine learning techniques are now widely applied in soil science to predict the spatial distribution of soil properties from observational data. Beyond prediction, the use of machine learning as a data-mining tool offers a promising pathway for improving soil carbon modelling and refining projections of climate–carbon feedbacks. In this paper, we review recent advances in the application of machine learning to global soil carbon modelling as a data-mining tool and highlight its potential to drive an iterative feedback loop that improves the representation of soil carbon dynamics in Earth System Models.

ISBN

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisusarja

Environmental research letters

Volyymi

20

Numero

10

Sivut

Sivut

5 p.

ISSN

1748-9326