Luke
 

Model-calibrated k-nearest neighbor estimators

dc.contributor.authorMagnussen, Steen
dc.contributor.authorTomppo, Erkki
dc.contributor.departmentLuke-
dc.contributor.departmentidLuke-]
dc.date.accessioned2017-01-25T14:09:42Z
dc.date.accessioned2025-05-29T21:44:14Z
dc.date.available2017-01-25T14:09:42Z
dc.date.issued2016
dc.description.abstractA generalized difference, a model-calibrated (MC), and a pseudo-empirical likelihood (PEMLE) kNN estimator of a population mean and its sampling variance was assessed with simulated simple random (SRS) and one-stage cluster sampling (CLU) from three artificial and one actual multivariate populations. The number of nearest neighbors (k) for imputing values of a target variable varied from one to eight. The design-based MC estimator had the lowest bias, but bias varied among populations and target variables. In terms of root mean squared errors (RMSEs), the estimators had similar performance, yet RMSEs of MC and PEMLE were less variable. Results were uneven across populations and target variables. The value of k had little effect on RMSE suggesting an advantage of choosing a low value that retains most of the attribute variance in a map. Nominal confidence intervals computed from MC estimators of variance achieved overall the best coverage rate. Rankings of the estimators in SRS and CLU designs were similar. We recommend MC for practical kNN applications in forest inventories for pixel-level predictions and derived estimates.-
dc.description.vuosik2016-
dc.formatSekä painettu, että verkkojulkaisu-
dc.format.bitstreamfalse
dc.format.pagerange183-193-
dc.identifier.elss1651-1891-
dc.identifier.olddbid480057
dc.identifier.oldhandle10024/538033
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/79950
dc.language.isoeng-
dc.okm.corporatecopublicationei-
dc.okm.discipline4112 Metsätiede-
dc.okm.internationalcopublicationon-
dc.okm.openaccess0 = Ei vastausta-
dc.okm.selfarchivedei-
dc.publisherTaylor & Francis AS-
dc.publisher.countryno-
dc.publisher.placeOslo-
dc.relation.doi10.1080/02827581.2015.1073348-
dc.relation.ispartofseriesScandinavian journal of forest research-
dc.relation.issn0282-7581-
dc.relation.numberinseries2-
dc.relation.volume31-
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/538033
dc.subject.keywordBias-
dc.subject.keywordroot mean squared errors-
dc.subject.keywordcoverage rate-
dc.subject.keywordpseudo-empirical likelihood-
dc.subject.keywordcluster sampling-
dc.subject.keywordforest inventory-
dc.subject.keywordremotely-sensed data-
dc.subject.keywordauxiliary information-
dc.subject.keywordsatellite imagery-
dc.titleModel-calibrated k-nearest neighbor estimators-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|-

Tiedostot

Kokoelmat