Luke
 

Machine learning in marine ecology: an overview of techniques and applications

dc.contributor.authorRubbens, Peter
dc.contributor.authorBrodie, Stephanie
dc.contributor.authorCordier, Tristan
dc.contributor.authorDestro Barcellos, Diogo
dc.contributor.authorDevos, Paul
dc.contributor.authorFernandes-Salvador, Jose A
dc.contributor.authorFincham, Jennifer I
dc.contributor.authorGomes, Alessandra
dc.contributor.authorHandegard, Nils Olav
dc.contributor.authorHowell, Kerry
dc.contributor.authorJamet, Cédric
dc.contributor.authorKartveit, Kyrre Heldal
dc.contributor.authorMoustahfid, Hassan
dc.contributor.authorParcerisas, Clea
dc.contributor.authorPolitikos, Dimitris
dc.contributor.authorSauzède, Raphaëlle
dc.contributor.authorSokolova, Maria
dc.contributor.authorUusitalo, Laura
dc.contributor.authorVan den Bulcke, Laure
dc.contributor.authorvan Helmond, Aloysius T M
dc.contributor.authorWatson, Jordan T
dc.contributor.authorWelch, Heather
dc.contributor.authorBeltran-Perez, Oscar
dc.contributor.authorChaffron, Samuel
dc.contributor.authorGreenberg, David S
dc.contributor.authorKühn, Bernhard
dc.contributor.authorKiko, Rainer
dc.contributor.authorLo, Madiop
dc.contributor.authorLopes, Rubens M
dc.contributor.authorMöller, Klas Ove
dc.contributor.authorMichaels, William
dc.contributor.authorPala, Ahmet
dc.contributor.authorRomagnan, Jean-Baptiste
dc.contributor.authorSchuchert, Pia
dc.contributor.authorSeydi, Vahid
dc.contributor.authorVillasante, Sebastian
dc.contributor.authorMalde, Ketil
dc.contributor.authorIrisson, Jean-Olivier
dc.contributor.departmentid4100111110
dc.contributor.orcidhttps://orcid.org/0000-0002-5143-5253
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2023-08-17T12:24:31Z
dc.date.accessioned2025-05-27T18:36:57Z
dc.date.available2023-08-17T12:24:31Z
dc.date.issued2023
dc.description.abstractMachine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.
dc.description.vuosik2023
dc.format.bitstreamtrue
dc.identifier.olddbid496329
dc.identifier.oldhandle10024/553765
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/6206
dc.identifier.urlhttps://doi.org/10.1093/icesjms/fsad100
dc.identifier.urnURN:NBN:fi-fe2023081797741
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationon
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherOxford University Press (OUP)
dc.relation.doi10.1093/icesjms/fsad100
dc.relation.ispartofseriesICES Journal of Marine Science
dc.relation.issn1054-3139
dc.relation.issn1095-9289
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/553765
dc.tehOHFO-Puskuri-2
dc.tehOHFO-STATS
dc.titleMachine learning in marine ecology: an overview of techniques and applications
dc.typepublication
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|en=A2 Review article, Literature review, Systematic review|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Machine_learning_in_marine_ecology.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Description:
Machine_learning_in_marine_ecology.pdf

Kokoelmat