Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods
| dc.contributor.author | Yin, Lichang | |
| dc.contributor.author | Tao, Fulu | |
| dc.contributor.author | Chen, Yi | |
| dc.contributor.author | Liu, Fengshan | |
| dc.contributor.author | Hu, Jian | |
| dc.contributor.departmentid | 4100311110 | |
| dc.contributor.organization | Luonnonvarakeskus | |
| dc.date.accessioned | 2022-01-19T08:42:36Z | |
| dc.date.accessioned | 2025-05-28T13:43:30Z | |
| dc.date.available | 2022-01-19T08:42:36Z | |
| dc.date.issued | 2021 | |
| dc.description.vuosik | 2021 | |
| dc.format.bitstream | false | |
| dc.format.pagerange | 18 p. | |
| dc.identifier.olddbid | 494033 | |
| dc.identifier.oldhandle | 10024/551483 | |
| dc.identifier.uri | https://jukuri.luke.fi/handle/11111/24164 | |
| dc.language.iso | en | |
| dc.okm.corporatecopublication | ei | |
| dc.okm.discipline | 1171 | |
| dc.okm.internationalcopublication | on | |
| dc.okm.openaccess | 0 = Ei vastausta | |
| dc.okm.selfarchived | ei | |
| dc.publisher | Elsevier | |
| dc.relation.articlenumber | 126538 | |
| dc.relation.doi | 10.1016/j.jhydrol.2021.126538 | |
| dc.relation.ispartofseries | Journal of hydrology | |
| dc.relation.issn | 0022-1694 | |
| dc.relation.issn | 1879-2707 | |
| dc.relation.volume | 600 | |
| dc.source.identifier | https://jukuri.luke.fi/handle/10024/551483 | |
| dc.subject.yso | Evapotranspiration | |
| dc.subject.yso | Machine learning | |
| dc.subject.yso | process-based ET | |
| dc.subject.yso | ET integration | |
| dc.subject.yso | China | |
| dc.subject.yso | Gaussian process regression | |
| dc.teh | OHFO-EI-OHFO | |
| dc.title | Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods | |
| dc.type | publication | |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| |
