Luke
 

Advanced Data Analysis as a Tool for Net Blotch Density Estimation in Spring Barley

dc.contributor.authorRuusunen, Outi
dc.contributor.authorJalli, Marja
dc.contributor.authorJauhiainen, Lauri
dc.contributor.authorRuusunen, Mika
dc.contributor.authorLeiviskä, Kauko
dc.contributor.departmentid4100110610
dc.contributor.departmentid4100110210
dc.contributor.orcidhttps://orcid.org/0000-0003-3574-9639
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2020-06-09T11:25:13Z
dc.date.accessioned2025-05-27T20:22:17Z
dc.date.available2020-06-09T11:25:13Z
dc.date.issued2020
dc.description.abstractA novel data analysis method for the evaluation of plant disease risk that utilizes weather information is presented in this paper. This research considers two different datasets: open weather data from the Finnish Meteorological Institute and long-term (1991–2017) plant disease severity observations in different hardiness zones in Finland. Historical net blotch severity data on spring barley were collected from official variety trials carried out by the Natural Resources Institute Finland (Luke) and the analysis was performed with existing data without additional measurements. Feature generation was used to combine different datasets and to enrich the information content of the data. The t-test was applied to validate features and select the most suitable one for the identification of datasets with high net blotch risk. Based on the analysis, the selected daily measured variables for the estimation of net blotch density were the average temperature, minimum temperature, and rainfall. The results strongly indicate that thorough data analysis and feature generation methods enable new tools for plant disease prediction. This is crucial when predicting the disease risk and optimizing the use of pesticides in modern agriculture. Here, the developed system resolves the correlation between weather measurements and net blotch observations in a novel way.
dc.description.vuosik2020
dc.format.bitstreamtrue
dc.format.pagerange15 p.
dc.identifier.olddbid488439
dc.identifier.oldhandle10024/545902
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/9919
dc.identifier.urnURN:NBN:fi-fe2020060841197
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline119
dc.okm.internationalcopublicationei
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI AG
dc.relation.articlenumber179
dc.relation.doi10.3390/agriculture10050179
dc.relation.ispartofseriesAgriculture
dc.relation.issn2077-0472
dc.relation.issn2077-0472
dc.relation.numberinseries5
dc.relation.volume10
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/545902
dc.subject.ysoadvanced data analysis
dc.subject.ysofeature generation
dc.subject.ysoplant disease prediction
dc.subject.ysomodern agriculture
dc.teh41007-00133300
dc.titleAdvanced Data Analysis as a Tool for Net Blotch Density Estimation in Spring Barley
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Ruusunen et al 2020.pdf
Size:
924.18 KB
Format:
Adobe Portable Document Format

Kokoelmat