Luke
 

Small area estimators in a simulation test

dc.contributor.authorKangas, Annika
dc.contributor.authorMyllymäki, Mari
dc.contributor.authorPackalen, Petteri
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-02-07T06:04:00Z
dc.date.accessioned2025-05-29T04:11:25Z
dc.date.available2025-02-07T06:04:00Z
dc.date.issued2025
dc.description.abstractThe Finnish National Forest Inventory produces municipality level results either with an indirect model-based K-nearest neighbor (K-NN) estimator or a direct design-based post-stratification estimator. Design-based approach is unbiased, but not always feasible due to low number of field plots. The K-NN estimator is lacking an analytical estimator for the variance. A composite estimator combining the indirect and direct estimates could be an attractive solution. In this article, estimators for small-area estimation are analyzed in a simulation experiment with varying size small areas and varying quality auxiliary data. The potential of estimators is assessed based on the true standard errors and RMSEs in the simulation experiment. Direct estimators and composite estimators work reasonably well with varying quality models, but the performance of indirect estimators is dependent on the quality of the model used. The performance of different estimators also depends on the size of the small areas. Linear models in which the weight of plots outside the target domain is smaller than those within the target domain, performed better than an unweighted model, suggesting that localizing the models for the small areas is beneficial. EBLUP approach also performed well, both in connection of a K-NN model and a linear model.
dc.format.bitstreamtrue
dc.format.pagerange17 p.
dc.identifier.citationHow to cite: Annika Kangas, Mari Myllymäki, and Petteri Packalen. 2025. Small area estimators in a simulation test. Canadian Journal of Forest Research. 55: 1-17. https://doi.org/10.1139/cjfr-2024-0070
dc.identifier.olddbid498675
dc.identifier.oldhandle10024/556103
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/56763
dc.identifier.urlhttp://dx.doi.org/10.1139/cjfr-2024-0070
dc.identifier.urnURN:NBN:fi-fe2025020710470
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherCanadian Science Publishing
dc.relation.doi10.1139/cjfr-2024-0070
dc.relation.ispartofseriesCanadian Journal of Forest Research
dc.relation.issn0045-5067
dc.relation.issn1208-6037
dc.relation.volume55
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556103
dc.subjectK-nearest neighbors
dc.subjectmixed model
dc.subjectarea effect
dc.subjectcomposite estimator
dc.subjectindirect estimator
dc.subjectdirect estimator
dc.teh41007-00246400
dc.teh41007-00259901
dc.teh41007-00261502
dc.titleSmall area estimators in a simulation test
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
kangas-etal-2024-small-area-estimators-in-a-simulation-test.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:
kangas-etal-2024-small-area-estimators-in-a-simulation-test.pdf

Kokoelmat