Luke
 

A Generalized Marginal and Mixed-Effect Models for Predicting Tree-Level Mortality with Unequal Measurement Intervals for Scots Pine in Finland

dc.contributor.authorSiipilehto, Jouni
dc.contributor.authorMäkinen, Harri
dc.contributor.departmentid4100110310
dc.contributor.departmentid4100110310
dc.contributor.orcidhttps://orcid.org/0000-0002-5661-8972
dc.contributor.orcidhttps://orcid.org/0000-0002-1820-6264
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-11-07T13:44:42Z
dc.date.issued2025
dc.description.abstractLogistic regression has been used to model individual tree mortality. However, unequal measurement intervals limit the use of reasonable link functions. Although marginal and mixed-effects models have been used, a comparison of these models for predicting mortality in new stands is lacking. We developed models for predicting the mortality of Scots pine (Pinus sylvestris) trees in Finland. The modelling data comprised 44 thinning experiments (127,057 tree-level observations), and 50% of the experiments were randomly selected for model evaluation (43 experiments, 112,518 tree-level observations). A complementary log–log model was used to predict mortality probability based on tree and stand characteristics and thinning effects. The measurement period length was added as an offset variable. The marginal (population-average) and mixed models with random effects (site, plot, and year) were fitted and evaluated. The evaluation consisted of fit statistics, comparisons of predicted and observed mortality rates, and simulations using the Motti stand simulator. The mixed models clearly provided better statistical fits than the marginal model. The evaluation with the Motti simulator showed the most accurate prediction in terms of stem number (N) and stand basal area (G) when using the marginal model. All models, except the random year effect, resulted in maximum G values that remained at a reasonable level in the prolonged Motti simulations. The current survival model in the Motti simulator is based on a relative density index derived from the self-thinning line and provides good prediction accuracy. Based on the new BAL-based models, we recommend the marginal model as an option to the current model.
dc.format.pagerange697-719
dc.identifier.citationHow to cite: Siipilehto, J., Mäkinen, H. A Generalized Marginal and Mixed-Effect Models for Predicting Tree-Level Mortality with Unequal Measurement Intervals for Scots Pine in Finland. For. Sci. 71, 697–719 (2025). https://doi.org/10.1007/s44391-025-00028-6
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103193
dc.identifier.urlhttps://doi.org/10.1007/s44391-025-00028-6
dc.identifier.urnURN:NBN:fi-fe20251107106147
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherOxford University Press
dc.relation.doi10.1007/s44391-025-00028-6
dc.relation.ispartofseriesForest science
dc.relation.issn0015-749X
dc.relation.issn1938-3738
dc.relation.volume71
dc.rightsCC BY 4.0
dc.source.justusid127869
dc.subjectPinus sylvestris
dc.subjectbetween-tree competition
dc.subjectcomplementary log-log regression
dc.subjectgeneralized linear mixed model
dc.subjectstand dynamics
dc.teh41007-00279201
dc.teh41007-00305900
dc.teh41007-00309501
dc.teh41007-00236101
dc.titleA Generalized Marginal and Mixed-Effect Models for Predicting Tree-Level Mortality with Unequal Measurement Intervals for Scots Pine in Finland
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
SiipilehtoandMakinen-ForestScience-2025-A_generalized_Marginal_and_Mixed-Effect_Models.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
SiipilehtoandMakinen-ForestScience-2025-A_generalized_Marginal_and_Mixed-Effect_Models.pdf

Kokoelmat