Luke
 

Pose estimation of sow and piglets during free farrowing using deep learning

dc.contributor.authorFarahnakian, Fahimeh
dc.contributor.authorFarahnakian, Farshad
dc.contributor.authorBjörkman, Stefan
dc.contributor.authorBloch, Victor
dc.contributor.authorPastell, Matti
dc.contributor.authorHeikkonen, Jukka
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100210710
dc.contributor.orcidhttps://orcid.org/0000-0002-5810-4801
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-08-14T06:22:28Z
dc.date.accessioned2025-05-27T20:09:00Z
dc.date.available2024-08-14T06:22:28Z
dc.date.issued2024
dc.description.abstractAutomatic and real-time pose estimation is important in monitoring animal behavior, health, and welfare. In this paper, we utilized pose estimation for monitoring the farrowing process to prevent piglet mortality and preserve the health and welfare of the sow. State-of-the-art Deep Learning (DL) methods have lately been used for animal pose estimation. This paper aims to probe the generalization ability of five common DL networks (ResNet50, ResNet101, MobileNet, EfficientNet, and DLCRNet) for sow and piglet pose estimation. These architectures predict the body parts of several piglets and the sow directly from input video sequences. Real farrowing data from a commercial farm was used for training and validation of the proposed networks. The experimental results demonstrated that MobileNet was able to detect seven body parts of the sow with a median test error of 0.61 pixels.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange13 p.
dc.identifier.citationHow to cite: Fahimeh Farahnakian, Farshad Farahnakian, Stefan Björkman, Victor Bloch, Matti Pastell, Jukka Heikkonen, Pose estimation of sow and piglets during free farrowing using deep learning, Journal of Agriculture and Food Research, Volume 16, 2024, 101067, ISSN 2666-1543, https://doi.org/10.1016/j.jafr.2024.101067
dc.identifier.olddbid497719
dc.identifier.oldhandle10024/555148
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/9521
dc.identifier.urlhttps://doi.org/10.1016/j.jafr.2024.101067
dc.identifier.urnURN:NBN:fi-fe2024081464883
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline113
dc.okm.discipline4111
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber101067
dc.relation.doi10.1016/j.jafr.2024.101067
dc.relation.ispartofseriesJournal of agriculture and food research
dc.relation.issn2666-1543
dc.relation.volume16
dc.rightsCC BY-NC-ND 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555148
dc.subjectdeep learning
dc.subjectconvolutional neural networks
dc.subjectlivestock
dc.subjectpose estimation
dc.subjectanimal behavior
dc.teh41007-00162801
dc.titlePose estimation of sow and piglets during free farrowing using deep learning
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Farahnakian_etal_2024_JofAgrFoodRes_Pose_estimation_of_sow.pdf
Size:
20.49 MB
Format:
Adobe Portable Document Format
Description:
Farahnakian_etal_2024_JofAgrFoodRes_Pose_estimation_of_sow.pdf

Kokoelmat