Luke
 

Global Meta-Analysis Integrated with Machine Learning Assesses Context-Dependent Microplastic Effects on Soil Microbial Biomass Carbon and Nitrogen

dc.contributor.authorXiang, Yangzhou
dc.contributor.authorRillig, Matthias C.
dc.contributor.authorPeñuelas, Josep
dc.contributor.authorNizzetto, Luca
dc.contributor.authorSardans, Jordi
dc.contributor.authorLong, Jian
dc.contributor.authorZhang, Jiachang
dc.contributor.authorLi, Rui
dc.contributor.authorLiu, Ying
dc.contributor.authorLuo, Yang
dc.contributor.authorYao, Bin
dc.contributor.authorLi, Yuan
dc.contributor.departmentid4100211410
dc.contributor.orcidhttps://orcid.org/0000-0003-1047-0690
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-11-14T08:54:22Z
dc.date.issued2025
dc.description.abstractMicroplastics (MPs) in soil can paradoxically stimulate microbial biomass in a highly context-dependent manner, potentially inducing decomposition and affecting carbon and nitrogen cycles. We conducted a global meta-analysis with 90 studies (710 observations of microbial biomass carbon (MBC), 354 of microbial biomass nitrogen (MBN)) integrated with machine learning to quantify MPs effects on soil microbial biomass. Field studies showed no significant effects, contrasting with controlled experiments where MPs increased MBC by 9.6% (95% CI: 7.2–11.9%) and MBN by 10.4% (6.8–14.0%). Biodegradable plastics (PBAT, PLA) induced stronger effects (36.1–67.6%) than conventional polymers (PE, PP, PS, PVC). Temperature emerged as the dominant factor, with a contrasting MPs effect on MBC (positive) and MBN (negative) at higher temperatures, suggesting potential decoupling of carbon and nitrogen cycles under warming conditions. Machine learning models (XGBoost, R2 = 0.62) significantly outperformed linear regressions (R2 = 0.02–0.05), revealing nonlinear responses and threshold effects. Stimulatory effects were most significant for medium-sized MPs (30–90 μm), at high concentrations (>10 g kg–1), and in soils with intermediate fertility, highlighting context-dependent risks to soil carbon and nitrogen cycling.
dc.format.pagerange15 p.
dc.identifier.citationHow to cite: Yangzhou Xiang, Matthias C. Rillig, Josep Peñuelas, Luca Nizzetto, Jordi Sardans, Jian Long, Jiachang Zhang, Rui Li, Ying Liu, Yang Luo, Bin Yao, and Yuan Li, Global Meta-Analysis Integrated with Machine Learning Assesses Context-Dependent Microplastic Effects on Soil Microbial Biomass Carbon and Nitrogen, Environ. Sci. Technol. 2025, https://doi.org/10.1021/acs.est.5c12883
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103210
dc.identifier.urlhttps://doi.org/10.1021/acs.est.5c12883
dc.identifier.urnURN:NBN:fi-fe20251114107876
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherAmerican Chemical Society
dc.relation.articlenumberacs.est.5c12883
dc.relation.doi10.1021/acs.est.5c12883
dc.relation.ispartofseriesEnvironmental science and technology
dc.relation.issn1520-5851
dc.relation.issn0013-936X
dc.rightsCC BY-NC-ND 4.0
dc.source.justusid128070
dc.subjectbiodegradable plastics
dc.subjectcarbon cycling
dc.subjectnitrogen cycling
dc.subjectsoil microbial biomass
dc.subjecttemperature effects
dc.tehOHFO-Puskuri-3
dc.titleGlobal Meta-Analysis Integrated with Machine Learning Assesses Context-Dependent Microplastic Effects on Soil Microbial Biomass Carbon and Nitrogen
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Xiang_etal_2025_EnvSciTechn_Global_metaanalysis.pdf
Size:
5.56 MB
Format:
Adobe Portable Document Format
Description:
Xiang_etal_2025_EnvSciTechn_Global_metaanalysis.pdf

Kokoelmat