Luke
 

Density Estimates as Representations of Agricultural Fields for Remote Sensing-Based Monitoring of Tillage and Vegetation Cover

dc.contributor.authorLuotamo, Markku
dc.contributor.authorYli-Heikkilä, Maria
dc.contributor.authorKlami, Arto
dc.contributor.departmentid4100510310
dc.contributor.orcidhttps://orcid.org/0000-0003-1528-7246
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2022-09-29T08:27:13Z
dc.date.accessioned2025-05-27T18:10:33Z
dc.date.available2022-09-29T08:27:13Z
dc.date.issued2022
dc.description.abstractWe consider the use of remote sensing for large-scale monitoring of agricultural land use, focusing on classification of tillage and vegetation cover for individual field parcels across large spatial areas. From the perspective of remote sensing and modelling, field parcels are challenging as objects of interest due to highly varying shape and size but relatively uniform pixel content and texture. To model such areas we need representations that can be reliably estimated already for small parcels and that are invariant to the size of the parcel. We propose representing the parcels using density estimates of remote imaging pixels and provide a computational pipeline that combines the representation with arbitrary supervised learning algorithms, while allowing easy integration of multiple imaging sources. We demonstrate the method in the task of the automatic monitoring of autumn tillage method and vegetation cover of Finnish crop fields, based on the integrated analysis of intensity of Synthetic Aperture Radar (SAR) polarity bands of the Sentinel-1 satellite and spectral indices calculated from Sentinel-2 multispectral image data. We use a collection of 127,757 field parcels monitored in April 2018 and annotated to six tillage method and vegetation cover classes, reaching 70% classification accuracy for test parcels when using both SAR and multispectral data. Besides this task, the method could also directly be applied for other agricultural monitoring tasks, such as crop yield prediction.
dc.description.vuosik2022
dc.format.bitstreamtrue
dc.format.pagerange19 p.
dc.identifier.olddbid494838
dc.identifier.oldhandle10024/552279
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/5523
dc.identifier.urnURN:NBN:fi-fe2022092960443
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline1171
dc.okm.internationalcopublicationei
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI AG
dc.relation.articlenumber679
dc.relation.doi10.3390/app12020679
dc.relation.ispartofseriesApplied Sciences
dc.relation.issn2076-3417
dc.relation.numberinseries2
dc.relation.volume12
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/552279
dc.subjectmachine learning
dc.subjectobject-based classification
dc.subjectdensity estimation
dc.subjecthistogram
dc.subjectland use
dc.subjectcrop fields
dc.subjectsoil tillage
dc.subjectdata fusion
dc.subjectmultispectral
dc.subjectSAR
dc.teh41003-00007500
dc.titleDensity Estimates as Representations of Agricultural Fields for Remote Sensing-Based Monitoring of Tillage and Vegetation Cover
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Luotamo_et_al_2022.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
Luotamo_et_al_2022.pdf

Kokoelmat