Luke
 

Why is there so much variability in crop multi-model studies?

dc.contributor.authorWallach, Daniel
dc.contributor.authorPalosuo, Taru
dc.contributor.authorMielenz, Henrike
dc.contributor.authorBuis, Samuel
dc.contributor.authorThorburn, Peter
dc.contributor.authorAsseng, Senthold
dc.contributor.authorDumont, Benjamin
dc.contributor.authorFerrise, Roberto
dc.contributor.authorGayler, Sebastian
dc.contributor.authorGhahramani, Afshin
dc.contributor.authorHarrison, Matthew Tom
dc.contributor.authorHochman, Zvi
dc.contributor.authorHoogenboom, Gerrit
dc.contributor.authorHuang, Mingxia
dc.contributor.authorJing, Qi
dc.contributor.authorJustes, Eric
dc.contributor.authorKersebaum, Kurt Christian
dc.contributor.authorLaunay, Marie
dc.contributor.authorLewan, Elisabet
dc.contributor.authorLiu, Ke
dc.contributor.authorLuo, Qunying
dc.contributor.authorMequanint, Fasil
dc.contributor.authorNendel, Claas
dc.contributor.authorPadovan, Gloria
dc.contributor.authorOlesen, Jørgen Eivind
dc.contributor.authorPullens, Johannes Wilhelmus Maria
dc.contributor.authorQian, Budong
dc.contributor.authorSeserman, Diana-Maria
dc.contributor.authorShelia, Vakhtang
dc.contributor.authorSouissi, Amir
dc.contributor.authorSpecka, Xenia
dc.contributor.authorWang, Jing
dc.contributor.authorWeber, Tobias K.D.
dc.contributor.authorWeihermüller, Lutz
dc.contributor.authorSeidel, Sabine J.
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0003-4322-3450
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-10-14T12:17:02Z
dc.date.issued2025
dc.description.abstractIt has become common to compare crop model results in multi-model simulation experiments. In general, one observes a large variability in such studies, which reduces the confidence one can have in such models. It is important to understand the causes of this variability as a first step toward reducing it. For a given data set, the variability in a multi-model study can arise from uncertainty in model structure or in parameter values for a given structure. Previous studies have made assumptions about the origin of parameter uncertainty, and then quantified its contribution, generally finding that parameter uncertainty is less important than structure uncertainty. However, those studies do not take account of the full parameter variability in multi-model studies. Here we propose estimating parameter uncertainty based on open-call multi-model ensembles where the same structure is used by more than one modeling group. The variability in such a case is due to the full variability of parameters among modeling groups. Then structure and parameter contributions can be estimated using random effects analysis of variance. Based on three multi-model studies for simulating wheat phenology, it is found that the contribution of parameter uncertainty to total uncertainty is, on average, more than twice as large as the uncertainty from structure. A second estimate, based on a comparison of two different calibration approaches for multiple models leads to a very similar result. We conclude that improvement of crop models requires as much attention to parameters as to model structure.
dc.format.pagerange9 p.
dc.identifier.citationHow to cite: Daniel Wallach, Taru Palosuo, Henrike Mielenz, Samuel Buis, Peter Thorburn, Senthold Asseng, Benjamin Dumont, Roberto Ferrise, Sebastian Gayler, Afshin Ghahramani, Matthew Tom Harrison, Zvi Hochman, Gerrit Hoogenboom, Mingxia Huang, Qi Jing, Eric Justes, Kurt Christian Kersebaum, Marie Launay, Elisabet Lewan, Ke Liu, Qunying Luo, Fasil Mequanint, Claas Nendel, Gloria Padovan, Jørgen Eivind Olesen, Johannes Wilhelmus Maria Pullens, Budong Qian, Diana-Maria Seserman, Vakhtang Shelia, Amir Souissi, Xenia Specka, Jing Wang, Tobias K.D. Weber, Lutz Weihermüller, Sabine J. Seidel, Why is there so much variability in crop multi-model studies?, Agricultural and Forest Meteorology, Volume 372, 2025, 110697, ISSN 0168-1923, https://doi.org/10.1016/j.agrformet.2025.110697.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103098
dc.identifier.urlhttp://dx.doi.org/10.1016/j.agrformet.2025.110697
dc.identifier.urnURN:NBN:fi-fe20251014101448
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber110697
dc.relation.doi10.1016/j.agrformet.2025.110697
dc.relation.ispartofseriesAgricultural and forest meteorology
dc.relation.issn0168-1923
dc.relation.issn1873-2240
dc.relation.volume372
dc.rightsCC BY 4.0
dc.source.justusid126605
dc.subjectcrop model
dc.subjectstructure uncertainty
dc.subjectparameter uncertainty
dc.subjectmulti-model studies
dc.teh41007-00300701
dc.titleWhy is there so much variability in crop multi-model studies?
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
1-s2.0-S016819232500317X-main.pdf
Size:
760.67 KB
Format:
Adobe Portable Document Format
Description:
1-s2.0-S016819232500317X-main.pdf

Kokoelmat