Luke
 

Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland

dc.contributor.authorRuusunen, Outi
dc.contributor.authorJalli, Marja
dc.contributor.authorJauhiainen, Lauri
dc.contributor.authorRuusunen, Mika
dc.contributor.authorLeiviskä, Kauko
dc.contributor.departmentid4100110610
dc.contributor.departmentid4100110210
dc.contributor.orcidhttps://orcid.org/0000-0003-3574-9639
dc.contributor.orcidhttps://orcid.org/0000-0003-2073-1057
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-11-29T13:14:31Z
dc.date.accessioned2025-05-29T02:05:29Z
dc.date.available2024-11-29T13:14:31Z
dc.date.issued2024
dc.description.abstractPredictive information on plant diseases could help to reduce and optimize the usage of pesticides in agriculture. This research presents classification procedures with linear discriminant analysis to predict three possible severity levels of net blotch in spring barley in Finland. The weather data utilized for classification included mathematical transformations, namely features of outdoor temperature and air humidity with calculated dew point temperature values. Historical field observations of net blotch density were utilized as a target class for the identification of classifiers. The performance of classifiers was analyzed in sliding data windows of two weeks with selected, cumulative, summed feature values. According to classification results from 36 yearly data sets, the prediction of net blotch occurrence in spring barley in Finland can be considered as a linearly separable classification task. Furthermore, this can be achieved with linear discriminant analysis by combining the output probabilities of separate binary classifiers identified for each severity level of net blotch disease. In this case, perfect classification with a resolution of three different net blotch severity levels was achieved during the first 50 days from the beginning of the growing season. This strongly suggests that real-time classification based on a few weather variables measured on a daily basis can be applied to estimate the severity of net blotch in advance. This allows application of the principles of integrated pest management (IPM) and usage of pesticides only when there is a proven need.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange18 p.
dc.identifier.citationHow to cite: Ruusunen, O.; Jalli, M.; Jauhiainen, L.; Ruusunen, M.; Leiviskä, K. Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture 2024, 14, 1779. https://doi.org/10.3390/agriculture14101779
dc.identifier.olddbid498127
dc.identifier.oldhandle10024/555555
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/52164
dc.identifier.urlhttp://dx.doi.org/10.3390/agriculture14101779
dc.identifier.urnURN:NBN:fi-fe2024112998067
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI
dc.relation.articlenumber1779
dc.relation.doi10.3390/agriculture14101779
dc.relation.ispartofseriesAgriculture
dc.relation.issn2077-0472
dc.relation.numberinseries10
dc.relation.volume14
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555555
dc.subjectbarley
dc.subjectnet blotch
dc.subjectclassification model
dc.subjectdecision support system
dc.teh41001-00005900
dc.titleLinear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
agriculture-14-01779-with-cover.pdf
Size:
532.43 KB
Format:
Adobe Portable Document Format
Description:
agriculture-14-01779-with-cover.pdf

Kokoelmat