Luke
 

Optimizing high-resolution multi-view drone imaging for detecting foreign grains in gluten-free oat production fields

dc.contributor.authorNäsi, Roope
dc.contributor.authorOliveira, Raquel A.
dc.contributor.authorRua, Stefan
dc.contributor.authorKhormashahi, Ehsan
dc.contributor.authorPäivänsalo, Axel
dc.contributor.authorNiemeläinen, Oiva
dc.contributor.authorHonkavaara, Eija
dc.contributor.authorNiskanen, Markku
dc.contributor.departmentid4100110210
dc.contributor.editorHonkavaara, Eija
dc.contributor.editorNex, Francesco
dc.contributor.editorChiabrando, Filiberto
dc.contributor.editorAlves de Oliveira, Raquel
dc.contributor.editorLehtola, Ville V.
dc.contributor.editorIwaszczuk, Dorota
dc.contributor.editordi Pietra, Vincenzo
dc.contributor.editorKim, Taejung
dc.contributor.orcidhttps://orcid.org/0000-0002-4684-8790
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2026-01-07T11:56:13Z
dc.date.issued2025
dc.description.abstractTo reduce the high cost of manually detecting and removing gluten-containing grains from oat crops, drone imaging and deep learning can be used to automate the detection process. In a previous work, a multi-image object detection approach was proposed utilizing high-resolution RGB images captured by a drone using multi-view technology, including nadir and four oblique angles. The images were georeferenced using bundle block adjustment (BBA), and a semi-supervised object detection model (Faster R-CNN) was trained to identify foreign grains. The detector outputs were projected into ground coordinates using a photogrammetric technique. These coordinates were then analyzed using a clustering approach to generate a detection map of barley plant locations. In this study focused on three main objectives. First, it aimed to optimize parameters related to the clustering phase. Second, it evaluated drone data capture settings by assessing whether fewer images could maintain acceptable detection accuracy to reduce flight time. Third, it tested whether direct georeferencing could produce results comparable to those obtained using BBA-based georeferencing. The study showed that using fewer images—for example, two view angles and a side overlap of 80%—could maintain good detection accuracy (omission error of 0.14 and commission error of 0.27). This setup would reduce data collection time from 100 min/ha to 40 min/ha—a substantial improvement for practical field operations. Direct georeferencing showed promising practical results, even though error statistics increased slightly compared to BBA-based georeferencing. These improvements could significantly reduce data capture and processing time, representing a meaningful step toward a practical, cost-effective solution for end-users aiming to detect weedy foreign barley in gluten-free oat production fields.
dc.format.pagerange235-240
dc.identifier.citationHow to cite: Näsi, R., Oliveira, R. A., Rua, S., Khormashahi, E., Päivänsalo, A., Niemeläinen, O., Honkavaara, E., and Niskanen, M.: Optimizing high-resolution multi-view drone imaging for detecting foreign grains in gluten-free oat production fields, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2/W11-2025, 235–240, https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-235-2025, 2025.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103579
dc.identifier.urlhttps://doi.org/10.5194/isprs-archives-xlviii-2-w11-2025-235-2025
dc.identifier.urnURN:NBN:fi-fe202601071622
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherISPRS Council
dc.relation.conferenceUncrewed Aerial Vehicles in Geomatics
dc.relation.doi10.5194/isprs-archives-xlviii-2-w11-2025-235-2025
dc.relation.ispartofVolume XLVIII-2/W11-2025, 2025 | ISPRS ICWG II/Ia, ICWG I/IV UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics : 10-12 September 2025, Espoo, Finland
dc.relation.ispartofseriesInternational archives of the photogrammetry, remote sensing and spatial information sciences
dc.relation.issn1682-1750
dc.relation.issn2194-9034
dc.relation.volumeXLVIII-2/W11-2025
dc.rightsCC BY 4.0
dc.source.justusid132657
dc.subjectUAV
dc.subjectdrone
dc.subjectremote sensing
dc.subjectphotogrammetry
dc.subjectagriculture
dc.subjectplant classification
dc.subjectdeep learning
dc.subjectoat
dc.subjectclustering
dc.subjectmulti-view
dc.teh41007-00313801
dc.titleOptimizing high-resolution multi-view drone imaging for detecting foreign grains in gluten-free oat production fields
dc.typepublication
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|sv=A4 Artikel i en konferenspublikation|en=A4 Conference proceedings|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Nasi_etal-Optimizing_high-resolution-isprs-archives-XLVIII-2-W11-2025-235-2025.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Nasi_etal-Optimizing_high-resolution-isprs-archives-XLVIII-2-W11-2025-235-2025.pdf

Kokoelmat