Luke
 

Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing

dc.contributor.authorXie, Mingjuan
dc.contributor.authorMa, Xiaofei
dc.contributor.authorWang, Yuangang
dc.contributor.authorLi, Chaofan
dc.contributor.authorShi, Haiyang
dc.contributor.authorYuan, Xiuliang
dc.contributor.authorHellwich, Olaf
dc.contributor.authorChen, Chunbo
dc.contributor.authorZhang, Wenqiang
dc.contributor.authorZhang, Chen
dc.contributor.authorLing, Qing
dc.contributor.authorGao, Ruixiang
dc.contributor.authorZhang, Yu
dc.contributor.authorOchege, Friday Uchenna
dc.contributor.authorFrankl, Amaury
dc.contributor.authorDe Maeyer, Philippe
dc.contributor.authorBuchmann, Nina
dc.contributor.authorFeigenwinter, Iris
dc.contributor.authorOlesen, Jørgen E.
dc.contributor.authorJuszczak, Radoslaw
dc.contributor.authorJacotot, Adrien
dc.contributor.authorKorrensalo, Aino
dc.contributor.authorPitacco, Andrea
dc.contributor.authorVarlagin, Andrej
dc.contributor.authorShekhar, Ankit
dc.contributor.authorLohila, Annalea
dc.contributor.authorCarrara, Arnaud
dc.contributor.authorBrut, Aurore
dc.contributor.authorKruijt, Bart
dc.contributor.authorLoubet, Benjamin
dc.contributor.authorHeinesch, Bernard
dc.contributor.authorChojnicki, Bogdan
dc.contributor.authorHelfter, Carole
dc.contributor.authorVincke, Caroline
dc.contributor.authorShao, Changliang
dc.contributor.authorBernhofer, Christian
dc.contributor.authorBrümmer, Christian
dc.contributor.authorWille, Christian
dc.contributor.authorTuittila, Eeva-Stiina
dc.contributor.authorNemitz, Eiko
dc.contributor.authorMeggio, Franco
dc.contributor.authorDong, Gang
dc.contributor.authorLanigan, Gary
dc.contributor.authorNiedrist, Georg
dc.contributor.authorWohlfahrt, Georg
dc.contributor.authorZhou, Guoyi
dc.contributor.authorGoded, Ignacio
dc.contributor.authorGruenwald, Thomas
dc.contributor.authorOlejnik, Janusz
dc.contributor.authorJansen, Joachim
dc.contributor.authorNeirynck, Johan
dc.contributor.authorTuovinen, Juha-Pekka
dc.contributor.authorZhang, Junhui
dc.contributor.authorKlumpp, Katja
dc.contributor.authorPilegaard, Kim
dc.contributor.authorŠigut, Ladislav
dc.contributor.authorKlemedtsson, Leif
dc.contributor.authorTezza, Luca
dc.contributor.authorHörtnagl, Lukas
dc.contributor.authorUrbaniak, Marek
dc.contributor.authorRoland, Marilyn
dc.contributor.authorSchmidt, Marius
dc.contributor.authorSutton, Mark A.
dc.contributor.authorHehn, Markus
dc.contributor.authorSaunders, Matthew
dc.contributor.authorMauder, Matthias
dc.contributor.authorAurela, Mika
dc.contributor.authorKorkiakoski, Mika
dc.contributor.authorDu, Mingyuan
dc.contributor.authorVendrame, Nadia
dc.contributor.authorKowalska, Natalia
dc.contributor.authorLeahy, Paul G.
dc.contributor.authorAlekseychik, Pavel
dc.contributor.authorShi, Peili
dc.contributor.authorWeslien, Per
dc.contributor.authorChen, Shiping
dc.contributor.authorFares, Silvano
dc.contributor.authorFriborg, Thomas
dc.contributor.authorTallec, Tiphaine
dc.contributor.authorKato, Tomomichi
dc.contributor.authorSachs, Torsten
dc.contributor.authorMaximov, Trofim
dc.contributor.authordi Cella, Umberto Morra
dc.contributor.authorModerow, Uta
dc.contributor.authorLi, Yingnian
dc.contributor.authorHe, Yongtao
dc.contributor.authorKosugi, Yoshiko
dc.contributor.authorLuo, Geping
dc.contributor.departmentid4100110510
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0002-4081-3917
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2023-11-29T07:01:13Z
dc.date.accessioned2025-05-28T11:03:45Z
dc.date.available2023-11-29T07:01:13Z
dc.date.issued2023
dc.description.abstractSimulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002–2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983–2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
dc.description.vuosik2023
dc.format.bitstreamtrue
dc.identifier.olddbid496650
dc.identifier.oldhandle10024/554084
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/21554
dc.identifier.urnURN:NBN:fi-fe202401031177
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline114
dc.okm.discipline1171
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Science and Business Media LLC
dc.relation.articlenumber587
dc.relation.doi10.1038/s41597-023-02473-9
dc.relation.ispartofseriesScientific Data
dc.relation.issn2052-4463
dc.relation.numberinseries1
dc.relation.volume10
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554084
dc.subjecteddy-covariance
dc.subjectupscaling evapotranspiration
dc.subjectRiver Basin
dc.subjectmodels
dc.subjectsite
dc.tehOHFO-Maa-ilma-4
dc.titleMonitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Xie_et_al_2023.pdf
Size:
8.62 MB
Format:
Adobe Portable Document Format
Description:
Xie_et_al_2023.pdf

Kokoelmat