Luke
 

Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches

dc.contributor.authorChen, Shuo
dc.contributor.authorLiu, Licheng
dc.contributor.authorMa, Yuchi
dc.contributor.authorZhuang, Qianlai
dc.contributor.authorShurpali, Narasinha J.
dc.contributor.departmentid4100211410
dc.contributor.orcidhttps://orcid.org/0000-0003-1052-4396
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-20T09:07:07Z
dc.date.accessioned2025-05-28T08:54:51Z
dc.date.available2025-01-20T09:07:07Z
dc.date.issued2024
dc.description.abstractWetland methane (CH4) emissions have a significant impact on the global climate system. However, the current estimation of wetland CH4 emissions at the global scale still has large uncertainties. Here we developed six distinct bottom-up machine learning (ML) models using in situ CH4 fluxes from both chamber measurements and the Fluxnet-CH4 network. To reduce uncertainties, we adopted a multi-model ensemble (MME) approach to estimate CH4 emissions. Precipitation, air temperature, soil properties, wetland types, and climate types are considered in developing the models. The MME is then extrapolated to the global scale to estimate CH4 emissions from 1979 to 2099. We found that the annual wetland CH4 emissions are 146.6 ± 12.2 Tg CH4 yr−1 (1 Tg = 1012 g) from 1979 to 2022. Future emissions will reach 165.8 ± 11.6, 185.6 ± 15.0, and 193.6 ± 17.2 Tg CH4 yr−1 in the last two decades of the 21st century under SSP126, SSP370, and SSP585 scenarios, respectively. Northern Europe and near-equatorial areas are the current emission hotspots. To further constrain the quantification uncertainty, research priorities should be directed to comprehensive CH4 measurements and better characterization of spatial dynamics of wetland areas. Our data-driven ML-based global wetland CH4 emission products for both the contemporary and the 21st century shall facilitate future global CH4 cycle studies.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange24 p.
dc.identifier.citationHow to cite: Chen, S., Liu, L., Ma, Y., Zhuang, Q., & Shurpali, N. J. (2024). Quantifying global wetland methane emissions with in situ methane flux data and machine learning approaches. Earth's Future, 12, e2023EF004330. https://doi.org/10.1029/2023EF004330
dc.identifier.olddbid498583
dc.identifier.oldhandle10024/556011
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14912
dc.identifier.urlhttps://doi.org/10.1029/2023EF004330
dc.identifier.urnURN:NBN:fi-fe202501205068
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.articlenumbere2023EF004330
dc.relation.doi10.1029/2023ef004330
dc.relation.ispartofseriesEarth's Future
dc.relation.issn2328-4277
dc.relation.issn2328-4277
dc.relation.numberinseries11
dc.relation.volume12
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556011
dc.source.justusid114393
dc.subjectwetland CH4 emissions
dc.subjectglobal climate impact
dc.subjectmulti-model ensemble
dc.subjectemission hotspots
dc.subjectclimate changes
dc.tehOHFO-Maa-ilma-3
dc.titleQuantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Chen_etal_2024_EarthsFuture_Quantifying_Global_Wetland.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:
Chen_etal_2024_EarthsFuture_Quantifying_Global_Wetland.pdf

Kokoelmat