Luke
 

Extrinsic parameter calibration methods of sensors present in a robot tractor

dc.contributor.authorKnuutinen, Jere
dc.contributor.authorBackman, Juha
dc.contributor.authorLinkolehto, Raimo
dc.contributor.authorVisala, Arto
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100210710
dc.contributor.orcidhttps://orcid.org/0000-0003-2010-4010
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-12-02T12:06:27Z
dc.date.issued2025
dc.description.abstractTo achieve large-scale deployment of autonomous agricultural machines, a reliable and accurate perception system must be developed. Often, autonomous machines use and require data from several sensors to work optimally and safely. Therefore, accurate extrinsic parameter calibration between various sensors is one of the first prerequisites. This paper equips an actual robot tractor with two LiDAR sensors, a stereo camera, and a GNSS/IMU unit and it investigates different extrinsic calibration methods between them in the agricultural environment. The extrinsic calibration method between the LiDAR sensors utilizes extracted planar structures from point clouds. In the case of the LiDAR and the GNSS/IMU unit, two calibration methods are developed. The first method utilizes LiDAR point cloud features, whereas the second method uses sensor motion estimates. In turn, the LiDARs and the camera are extrinsically calibrated using a traditional checkerboard method. The results with the actual robot tractor show that the methods achieve correct and consistent calibration results in the agricultural environment. The optimization functionality of the LiDAR-to-LiDAR calibration method was validated using simulation. In addition, the actual results are validated by cross-validation by calculating extrinsic parameters between LiDAR sensors using the other methods mentioned above. The average standard deviation of the results is 0.3189∘ for rotation and 0.0491 m for translation parameters. In addition, a visual examination of the results strengthens this conclusion.
dc.format.pagerange10 p.
dc.identifier.citationHow to cite: Jere Knuutinen, Juha Backman, Raimo Linkolehto, Arto Visala, Extrinsic parameter calibration methods of sensors present in a robot tractor, Smart Agricultural Technology, Volume 12, 2025, 101318, ISSN 2772-3755, https://doi.org/10.1016/j.atech.2025.101318.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103321
dc.identifier.urlhttps://doi.org/10.1016/j.atech.2025.101318
dc.identifier.urnURN:NBN:fi-fe20251202113565
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline213
dc.okm.discipline222
dc.okm.discipline415
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber101318
dc.relation.doi10.1016/j.atech.2025.101318
dc.relation.ispartofseriesSmart agricultural technology
dc.relation.issn2772-3755
dc.relation.volume12
dc.rightsCC BY 4.0
dc.source.justusid129382
dc.subjectextrinsic calibration
dc.subject3D LiDAR
dc.subjectcamera
dc.subjectGNSS/IMU
dc.subjectcross-validation
dc.teh41007-00313201
dc.titleExtrinsic parameter calibration methods of sensors present in a robot tractor
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Knuutinen_etal-SmartAgriculturalTechnology-2025-Extrinsic_parameter.pdf
Size:
2.93 MB
Format:
Adobe Portable Document Format
Description:
Knuutinen_etal-SmartAgriculturalTechnology-2025-Extrinsic_parameter.pdf

Kokoelmat